Wybrane czynniki warunkujące występowanie pasożytów i ich wpływ na produkcyjność owiec

Selected factors conditioning the occurrence of parasites and their impact on the productivity of sheep

mgr inż. Paulina Nazar (Dudko)

Autoreferat pracy doktorskiej

Doctoral thesis

Promotor

dr. hab. Andrzej Junkuszew prof. nadzw.
Uniwersytet Przyrodniczy w Lublinie

Promotor pomocniczy

dr n.wet. Maria Studzińska
Uniwersytet Przyrodniczy w Lublinie

Recenzenci

Prof. dr hab. Roman Niżnikowski
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

Dr hab. Aldona Kawęcka
Instytut Zootechniki- PIB w Krakowie

Lublin, 2019
Badania w niniejszej rozprawie doktorskiej zostały zrealizowane w ramach projektu BIOSTRATEG pt. „Kierunki wykorzystania oraz ochrona zasobów genetycznych zwierząt gospodarskich w warunkach zrównoważonego rozwoju” (BIOSTRATEG2/297267/14/NCBR/2016) finansowanego przez Narodowe Centrum Badań i Rozwoju.
Spis treści

Wykaz publikacji wchodzących w skład pracy doktorskiej 5
Oświadczenia autorów ... 7
Streszczenie .. 19
Summary ... 21
Wstęp ... 23
Cel i hipoteza badawcza ... 25
Materiał i metody ... 26
 1.1 Ocena wpływu rasy ... 26
 1.2 Ocena wpływu okresu fizjologicznego .. 26
 1.3 Ocena wpływu żywienia matek i jagniąt paszą z dodatkiem preparatu zawierającego roślinne olejki eteryczne na występowanie zarażeń pasożytniczych oraz na efekt ekonomiczny produkcji jagniąt rzeźnych .. 26
 1.3.1 Owce matki ... 27
 1.3.2 Jagnięta ... 27
 1.3.3 Analiza ekonomiczna .. 28
 1.4 Analizy parazytologiczne .. 28
 1.5 Analiza statystyczna .. 28
Wyniki .. 30
 Ocena wpływu rasy ... 30
 Ocena wpływu okresu fizjologicznego .. 30
 Ocena wpływu żywienia matek paszą z dodatkiem preparatu zawierającego roślinne olejki eteryczne na występowanie zarażeń pasożytniczych .. 31
 Ocena wpływu żywienia jagniąt paszą z dodatkiem preparatu zawierającego roślinne olejki eteryczne na występowanie zarażeń pasożytniczych .. 32
 Ocena wpływu żywienia owiec paszą z dodatkiem preparatu zawierającego roślinne olejki eteryczne na efekt ekonomiczny produkcji jagniąt rzeźnych .. 33
Podsumowanie i wnioski ... 35
Piśmiennictwo .. 36
Prace stanowiące cykl publikacji .. 38
Wykaz publikacji wchodzących w skład pracy doktorskiej

Liczba punktów w roku publikacji: **MNISW = 15; IF 2017 = 0,197**

Indywidualny wkład pracy w publikację (70%): koncepcja pracy, opracowanie założeń metodycznych, gromadzenie danych, analiza i opracowanie wyników, sformułowanie wniosków, redagowanie manuskryptu, korekta po recenzjach.

Liczba punktów w roku publikacji: **MNISW = 15; IF 2017 = 0,197**

Indywidualny wkład pracy w publikację (80%): koncepcja pracy, opracowanie założeń metodycznych, gromadzenie danych, analiza i opracowanie wyników, sformułowanie wniosków, redagowanie manuskryptu, korekta po recenzjach.

Liczba punktów w roku publikacji: **MNISW = 15; IF 2017 = 0,197**

Indywidualny wkład pracy w publikację (10%): udział w opracowywaniu koncepcji pracy, opracowanie wyników, sformułowanie wniosków, redagowanie manuskryptu.

Liczba punktów w roku publikacji: **MNISW = 25; IF 2018 = 0,990**

Indywidualny wkład pracy w publikację (60%): koncepcja pracy, opracowanie założeń metodycznych, gromadzenie danych, analiza i opracowanie wyników, sformułowanie wniosków, redagowanie manuskryptu, korekta po recenzjach.

*Liczba punktów w roku publikacji: MNiSW = 7
Indywidualny wkład pracy w publikację (100%): koncepcja pracy, opracowanie założeń metodycznych, gromadzenie danych, analiza i opracowanie wyników, sformułowanie wniosków, redagowanie manuskryptu, korekta po recenzjach.

Łączna liczba punktów MNiSW* = 77
IF (*Impact factor*)** = 1,581
Udział w publikacjach = 64%

* Wykaz czasopism naukowych MNiSW
** Web of ScienceTM – Journal Citation Report
Oświadczenie

Oświadczam, że mój udział w niżej wymienionych publikacjach polegał na konsultacji do opracowania założeń metodycznych i statystycznej obróbki wyników oraz końcowej weryfikacji manuskryptu:

Indywidualny wkład pracy w publikację: 10%

Indywidualny wkład pracy w publikację: 10%

Indywidualny wkład pracy w publikację: 10%

Indywidualny wkład pracy w publikację: 15%

Wyrażam zgodę na wykorzystanie niniejszych publikacji w opracowaniu stanowiącym rozprawę doktorską Pani mgr inż. Pauliny Dudko.

[Podpisy]
Oświadczenie

Oświadczam, że mój udział w niżej wymienionych publikacjach polegał na konsultacji parazytologicznej:

Indywidualny wkład pracy w publikację: 4%

Indywidualny wkład pracy w publikację: 10%

Indywidualny wkład pracy w publikację: 5%

Indywidualny wkład pracy w publikację: 1%

Wyrażam zgodę na wykorzystanie niniejszych publikacji w opracowaniu stanowiącym rozprawę doktorską Pani mgr inż. Pauliny Dudko.

Dr hab. Krzysztof Tomczuk prof. nadzw. UP
Oświadczenie

Oświadczam, że mój udział w niżej wymienionych publikacjach polegał na konsultacjach merytorycznych (praca 1. i 2.) oraz opracowaniu koncepcji pracy i gromadzeniu danych (praca 3.):

Indywidualny wkład pracy w publikację: 5%

Indywidualny wkład pracy w publikację: 35%

Wyrażam zgodę na wykorzystanie niniejszych publikacji w opracowaniu stanowiącym rozprawę doktorską Pani mgr inż. Pauliny Dudko.

dr Wiktor Bojar
dr Klaudiusz Szczepaniak
Zakład Parazytolii i Chorób Inwazyjnych
Uniwersytet Przyrodniczy w Lublinie
ul. Akademicka 12
20-950 Lublin

Oświadczenie

Oświadczam, że mój udział w niżej wymienionych publikacjach polegał na wykonaniu analiz parazy托logicznych:

Indywidualny wkład pracy w publikację: 5%

Indywidualny wkład pracy w publikację: 5%

Indywidualny wkład pracy w publikację: 5%

Wyrażam zgodę na wykorzystanie niniejszej publikacji w opracowaniu stanowiącym rozprawę doktorską Pani mgr inż. Pauliny Dudko.

[Signature]
dr Klaudiusz Szczepaniak
Declaration

I declare that my participation in the following publications consisted in consulting the statistical analysis of the results:

 Individual contribution to the publication: 5%

 Individual contribution to the publication: 1%

I agree to use this publications in a doctoral dissertation Mrs Paulina Dudko MSc.

Michal Milerski, Ph.D.
I declare that my participation in the following publications consisted in consulting the methodological assumptions:

 Individual contribution to the publication: 5%

 Individual contribution to the publication: 1%

I agree to use this publications in a doctoral dissertation Mrs Paulina Dudko MSc.
prof. dr hab. Tomasz M. Gruszecki
Zakład Hodowli Małych Przeżuwaczy i Stacja Badawcza im. prof. T. Efnera
Uniwersytet Przyrodniczy w Lublinie
ul. Akademicka 13
20-950 Lublin

Oświadczenie
Oświadczam, że mój udział w niżej wymienionych publikacjach polegał na opracowaniu założeń metodycznych:

Indywidualny wkład pracy w publikację: 20%

Wyrazam zgodę na wykorzystanie niniejszej publikacji w opracowaniu stanowiącym rozprawę doktorską Pani mgr inż. Pauliny Dudko.

[Signature]

prof. dr hab. Tomasz M. Gruszecki
Oświadczenie

Oświadczam, że mój udział w niżej wymienionych publikacjach polegał na konsultacjach merytorycznych:

Indywidualny wkład pracy w publikację: 6%

Wyrażam zgodę na wykorzystanie niniejszej publikacji w opracowaniu stanowiącym rozprawę doktorską Pani mgr inż. Pauliny Dudko.

\[\text{dr Monika Gregula-Kania}\]
Oświadczenie

Oświadczam, że mój udział w niżej wymienionych publikacjach polegał na wykonaniu analiz parazytologicznych:

Indywidualny wkład pracy w publikację: 5%

Wyrażam zgodę na wykorzystanie niniejszej publikacji w opracowaniu stanowiącym rozprawę doktorską Pani mgr inż. Pauliny Dudko.

[Signature]

dr Maria Studzińska
Jitka Schmidová, Ph.D.
Department of Genetics and Breeding of Farm Animals
Institute of Animal Science
Přátelství 815
104 00 Praha Uhříněves
Czech Republic

Declaration

I declare that my participation in the following publications was based on substantive consultations of the results of the research:

Individual contribution to the publication: 5%

I agree to use this publication in a doctoral dissertation Mrs Paulina Dudko MSc.

..

Jitka Schmidová, Ph.D.
Oświadczenie

Oświadczam, że mój udział w niżej wymienionych publikacjach polegał na wykonaniu analiz parazytologicznych:

Indywidualny wkład pracy w publikację: 1%

Wyrażam zgodę na wykorzystanie niniejszej publikacji w opracowaniu stanowiącym rozprawę doktorską Pani mgr inż. Pauliny Dudko.

dr Monika Roczeń-Karczmarz
Oświadczenie

Oświadczam, że mój udział w niżej wymienionych publikacjach polegał na konsultacji językowej końcowej wersji manuskryptu:

Indywidualny wkład pracy w publikację: 1%

Wyrażam zgodę na wykorzystanie niniejszej publikacji w opracowaniu stanowiącym rozprawę doktorską Pani mgr inż. Pauliny Dudko.

[Podpis]

dr Maciej Grzybek

[Podpis]

dr n. wet. Maciej Grzybek
oraz intensywności inwazji pierwotniaków z rodzaju *Eimeria*. Zastosowany preparat korzystnie wpływał na wzrost jagniąt w całym okresie odchowu. Ograniczenie inwazji kokcydiów u jagniat w wyniku żywienia paszą z dodatkiem olejków eterycznych wpłynęło korzystnie na końcowy wynik ekonomiczny zwiększając wpływy za żywiec rzeźny od 7,83 do 45,17% w zależności od wieku jagniąt. W przypadku stwierdzonej, na podstawie badania parazytologicznego, konieczności przeprowadzenia zabiegów odrobaczających najkorzystniejszym terminem, ze względu na najwyższą ekstensywność jak i abundancję inwazji, jest okres zasuszania i jałowości. Wykorzystanie ras o mniejszej wrażliwości na zarażenia w połączeniu z żywieniem paszą zawierającą roślinne substancje bioaktywne o działaniu przeciwpasożytniczym może stanowić alternatywę dla stosowania tradycyjnych środków chemicznych w profilaktyce przeciwpasożytniczej stad owiec.

Słowa kluczowe: owce, jagnięta, rasa, okres fizjologiczny, suplementacja, olejki eteryczne, *Origanum vulgare*, *Citrus* spp., efekt ekonomiczny
Summary

The aim of the study was to determine the influence of factors such as breed, physiological condition and supplementation of feed based on the natural essential oils of *Origanum vulgare* (*Lamiaceae*) and *Citrus* *spp.* (*Citraceae*) on the extensiveness and intensity of parasitic infestations in sheep, and to estimate the influence of the supplement on the economic effectiveness of lamb production. The study was carried out at the Bezek experimental farm, which belongs to the University of Life Sciences in Lublin. The animal material consisted of ewes and lambs of the uhruska sheep breed and ewes of synthetic lines bcp and scp. In all experiments a total of 1430 animals were observed, comprising 878 ewes and 552 lambs. The animals were kept under uniform environmental and feeding conditions as well as constant zootechnical and veterinary control. During the experiments, parasitological studies were carried out in order to determine the intensity and extensiveness of intestinal parasite infestations in sheep. The tested material consisted of faeces taken from the rectum from of the ewes: during pregnancy and on days 2, 28, 42, 56 and 100 after lambing, as well as in the period of sterility. Material was taken from lambs on days 28, 42, 56 and 100 of their life. In order to determine the effect of feeding with supplements containing essential oils from *Origanum vulgare* and *Citrus* *spp.* on the reduction of parasitic infections and improvement in lamb growth, the animals were divided into three groups. Group 1 - control group, without supplementation. Group 2 - diet containing supplements in the period from month 3 of pregnancy to birth; born lambs were fed the same as the control group. Group 3 - diet containing supplements in the period from month 3 of pregnancy to weaning, lambs from the day 14 of life. During the experiment, the extensiveness and intensity of the parasite infestations were monitored. Also, the weight of the animals and the daily gains were monitored. Ultrasound examinations were performed in order to determine the muscularity and body fat content in the lambs. The study showed a significantly less extensive parasite infestations in the uhruska sheep compared to both synthetic bcp and scp lines. The highest values of the extent and intensity of infestations with protozoa of the genus *Eimeria* and *Trichostrongylidae* and *Capillaria* nematodes were observed in the period of weaning and sterility. The application of a preparation containing essential oils from *Origanum vulgare* (*Lamiaceae*) and *Citrus* *spp.* (*Citraceae*) reduced the extensiveness of *Eimeria* *spp.*, *Trichostrongylidae* and *Capillaria* infestations in the ewes. In the case of lambs, there was a significant effect of the preparation on the decrease in extensiveness and intensity of protozoa infestations of the genus *Eimeria*. The applied preparation had a positive effect on the growth of lambs during the whole rearing
period. The reduction in coccidia infections in lambs as a result of feeding with fodder containing essential oils had a positive effect on the final economic result, increasing the income potential from 7.83% to 45.17%, depending on the age of lambs. If it were necessary to conduct a deworming treatment, based on the result of a parasitological examination, the best time would be the period of weaning and sterility, due to the highest extensiveness and abundance of the infestation. The use of breeds with lower susceptibilities to infection in combination with feeding a feed containing bioactive plant substances with an anti-parasitic effect may be an alternative to the use of traditional chemicals in the prevention of anti-parasitic in sheep.

Keywords: sheep, lambs, breed, physiological period, supplementation, essential oil, *Origanum vulgare, Citrus* spp., economic effect
Wstęp

Jednym z ważniejszych problemów z jakim spotykają się hodowcy owiec na całym świecie są zarażenia pasożyticze. Problem ten jest istotny, ze względu na duże straty ekonomiczne spowodowane zmniejszeniem produkcyjności, a także kosztami związanymi z leczeniem (Aguerre i wsp., 2018; Lambertz i wsp., 2018). Do najczęstszych objawów zarażenia pasożytami można zaliczyć biegunkę, utratę masy ciała, zmniejszone tempo wzrostu, niższą wydajność mleka, a w skrajnych przypadkach upadki zwierząt (Mavrot i wsp., 2015; Burgunder i wsp., 2018).

Omawiając problem zarażeń pasożyticzych u małych przeżuwaczy należy zauważyć, że często mają one postać subkliniczną przez co nie są zauważane przez hodowców. Brak widocznych objawów opóźnia diagnozę zarażenia co w wielu przypadkach uniemożliwia prawidłowe leczenie. W związku z tym szczególnego znaczenia nabiera opracowanie skutecznych metod profilaktycznych, które pozwoliłyby na ograniczenie ryzyka wystąpienia zarażeń (Tariq, 2018; Mendes i wsp., 2017).

(Cazarotto i wsp., 2018). Dobrym rozwiązaniem wydaje się połączenie zbilansowanego żywienia mineralnego z substancjami roślinnymi o działaniu przeciwpasożytniczym (Junkszew i wsp., 2015). Zastosowanie preparatów ziołowych i ekstraktów roślinnych staje się w ostatnich latach doskonałą alternatywą dla dodatków chemicznych (Cervantes-Valencia i wsp., 2016; Lambertz i wsp., 2018). Warto podkreślić, że stosowanie roślin leczniczych w profilaktyce i leczeniu inwazji pasożytów, w tym nicieni żołądkowo-jelitowych, ma swoje źródło w medycynie ludowej (Athanasiadou i wsp., 2007). Chociaż do niedawna większość danych dotyczących aktywności przeciwpasożytniczej roślin leczniczych była przypuszczeniem, to jednak obecnie wzrasta liczba eksperymentów badawczych mających na celu weryfikację odziaływania na pasożyty naturalnych aktywnych substancji w nich zawartych (Athanasiadou i wsp., 2007).

W związku z powyższej przedstawionymi informacjami, opracowywane programy profilaktyki przeciwpasożytniczej powinny uwzględniać różne metody, które będą się wzajemnie uzupełniać i będą dostosowane do lokalnych warunków i praktyk hodowlanych (Taylor, 2013). Biorąc to pod uwagę szczególnie ważne staje się określenie czynników genetycznych, fizjologicznych czy też żywieniowych mogących wpływać na poziom inwazji. Niezwykle istotne jest też poszukiwanie roślin o działaniu przeciwpasożytniczym, które można by wdrożyć do profilaktyki. Zastosowanie takich praktyk mogłoby w konsekwencji sprawić, że chemioterapeutyki byłyby wykorzystywane tylko w przypadkach wysokiego poziomu inwazji, jedynie na podstawie badań parazytologicznych (Muchiut i wsp., 2018).
Cel i hipoteza badawcza

Inwazje pasożytnicze powodują znaczne starty ekonomiczne przez co obniżają opłacalność produkcji. Problem ten potęguje odporność pasożytów na powszechnie stosowane chemioterapeutyki, z którym zmagają się hodowcy na całym świecie. Dlatego też naukowcy i hodowcy starają się opracować programy profilaktyki przeciwpasożytniczej bez wykorzystania środków chemicznych, które pozwoliłyby na ochronę stad owiec przed inwazjami pasożytniczymi.

W związku z powyższym w hipotezie badawczej założono, że istnieją alternatywne metody profilaktyki przeciwpasożytniczej owiec, ograniczające wykorzystanie środków chemicznych. Podstawą sformułowania w/w hipotezy były następujące założenia:

- Lokalne rasy zwierząt, utrzymywane na danym obszarze od wielu lat, wykazują mniejszą wrażliwość na zarażenia pasożytnicze, ze względu na wytworzenie genetycznej odporności na inwazje pasożytnicze.
- Istnieje zależność pomiędzy okresem fizjologicznym a podatnością na zarażenia pasożytnicze.
- Wprowadzenie do diety dodatku preparatu zawierającego olejki eteryczne Origanum vulgare i Citrus spp. wpływa na ograniczenie inwazji pasożytniczych.

W celu weryfikacji hipotez badawczych przeprowadzono doświadczenia, których celem było określenie wpływu czynników genetycznych, fizjologicznych i środowiskowych na poziom inwazji pasożytniczych. Realizacja tego celu była możliwa poprzez realizację celów szczegółowych takich jak:
- określenie wpływu rasy na ekstensywność i intensywność inwazji pasożytniczych,
- określenie wpływu okresu fizjologicznego na intensywność i abundancję inwazji pasożytniczych,
- określenie wpływu suplementacji diety owiec matek i jagniąt na ekstensywność i intensywność inwazji pasożytniczych,
- określenie wpływu suplementacji na efekt ekonomiczny produkcji jagniąt.
Materiał i metody

Badania przeprowadzono w eksperymentalnej stacji Bezek należącej do Uniwersytetu Przyrodniczego w Lublinie, w której utrzymywanych jest 550 owiec matek. Materiał zwierzęcy stanowiły matki i jagnięta rasy uhruskiej oraz owce matki linii syntetycznych bcp i scp. We wszystkich eksperymentach obserwacjami objęto łącznie 1430 zwierząt, w tym 878 owiec matek oraz 552 jagnięta. Zwierzęta w trakcie doświadczeń były utrzymywane w jednym gospodarstwie w systemie alkierowym (okres od października do maja) lub alkierzowo-pastwiskowym (w pozostałym okresie) w stałych warunkach żywieniowo–środowiskowych pod stałą kontrolą zootechniczno–weterynaryjną.

1.1 Ocena wpływu rasy

Badania mające na celu określenie wpływu rasy na intensywność oraz ekstensywność występowania zarażeń pasożytniczych przeprowadzono na 210 owcach matkach: 70 owiec matek rasy uhruskiej, 70 owiec matek linii syntetycznej scp oraz 70 owiec matek linii syntetycznej bcp. W trakcie doświadczenia przeprowadzono badania parazytologiczne. Materiał badawczy stanowił kał pobierany z prostnicy od owiec matek w okresie jesieni (listopad), zimy (styczeń), wiosny (kwiecień) oraz lata (czerwiec).

1.2 Ocena wpływu okresu fizjologicznego

Badania przeprowadzono na 224 owcach matkach linii syntetycznej scp, w okresie kolejnych dwóch lat. W pierwszym roku badaniami objęto 103, a w drugim 121 sztuk owiec matek. Owe matki uczestniczące w doświadczeniu nie były odrobaczane w przeciągu roku poprzedzającego oraz w trakcie obserwacji. W trakcie doświadczenia przeprowadzono badania parazytologiczne. Materiałem do badań były próbki kału zwierząt pobierane z prostnicy w następujących okresach fizjologicznych: okres ciąży (listopad), w 2., 28., 42. i 56. dniu po wykotach, w okresie zasuszania (100 dni po wykotach) oraz okresie jałowości (pomiędzy zasuszaniem a stanówką).

1.3 Ocena wpływu żywienia matek i jagniąt paszą z dodatkiem preparatu zawierającego roślinooleje eteryczne na występowanie zarażeń pasożytniczych oraz na efekt ekonomiczny produkcji jagniąt rzeźnych
Dwa miesiące przed wykotami dokonano pierwszego pobrania i analizy kału owiec. Na podstawie wyników przeprowadzonej analizy parazytologicznej podzielono stado owiec matek na trzy grupy o zbliżonej ekstensywności i intensywności stwierdzonych inwazji pasożytniczych. Wszystkie grupy były jednorodne pod względem cech genetycznych, wieku oraz utrzymywane w tych samych warunkach. Czynnikiem różnicującym był dodatek preparatu OILIS SD (NEO VIA / Francja) w dawce 4 g / dzień (dla owiec) i 2 g / dzień (dla jagniąt). Zastosowany preparat OILIS SD (NEO VIA / Francja) zawierał, według informacji podanych przez producenta, kompozycję olejków eterycznych z Origanum vulgare (Lamiaceae) i Citrus spp. (Citraceae).

Grupa 1- grupa kontrolna, dieta nie była suplementowana (74 owce matki i 87 jagniąt)
Grupa 2- dieta suplementowana preparatem OILIS SD o działaniu kokcydiostatycznym w okresie od trzeciego miesiąca ciąży aż do wykotu, urodzone żywione jak grupa kontrolna (73 owce matki i 105 jagniąt)
Grupa 3- dieta suplementowana preparatem OILIS SD o działaniu kokcydiostatycznym w okresie od trzeciego miesiąca ciąży do odsadzenia jagniąt, urodzone jagnięta od 14 dnia życia otrzymywały paszę z dodatkiem OILIS SD (75 owiec matki i 84 jagnięta).

1.3.1 Owce matki

W celu określenia wpływu olejków eterycznych zawartych w paszy na intensywność i ekstensywność inwazji pasożytniczych u owiec matek analizami parazytologicznymi objęto grupę 222 owiec matek podzielonych na w/w 3 grupy badawcze. Materiał badawczy stanowił kał pobierany z prostnicy od owiec matek przed rozpoczęciem doświadczenia, w 2., 28., 42., 56., 70. dniu po wykocie.

1.3.2 Jagnięta

Badania nad wpływem suplementacji diety preparatem opartym na naturalnych olejkach eterycznych na ekstensywność i intensywność inwazji pasożytów u jagniąt przeprowadzono na grupie 276 zwierząt. Materiał badawczy stanowił kał pobierany z prostnicy jagniąt w wieku 28., 42., 56. i 70. dni pochodzących z powyższych opisanych trzech grup badawczych.
Jagnięta ważono przy urodzeniu oraz w wieku 28., 56., 70. i 100. dni. Masy jagnięta zostały wykorzystane do obliczenia dobowych przyrostów masy ciała między poszczególnymi okresami. U 100-dniowych jagniąt wykonano in vivo pomiary ultrasonograficzne głębokości
mięśnię i grubości tłuszczu podskórnego przy użyciu ultrasonografu (EchoSon Albit) wyposażonego w elektroniczną szerokopasową sondę liniową (LA-510 / L40). Pomiary ultrasonograficzne wykonane zostały między ostatnim kręgiem piersiowym a pierwszym kręgiem lędźwiowym.

1.3.3 Analiza ekonomiczna

W trakcie doświadczenia urodzone jagnięta poddane były okresowym ważeniom: przy urodzeniu, w 28., 56., 70. i 100. dniu życia. Na podstawie uzyskanych wyników badań oszacowano wartość ekonomiczną odchowanych jagniąt w poszczególnych standardach wagowych, uwzględniając ich przynależność do grup doświadczalnych. Do wyliczenia wartości jagniąt posłużono się średnią ceną uzyskiwaną za materiał rzeźny w poszczególnych standardach wagowych. Obowiązujące ceny zostały udostępnione przez Regionalny Związek Hodowców Owiec i Kóz w Lublinie. W obliczeniach (wyliczając średnią wartość jagnięcia) uwzględniono wszystkie jagnięta uczestniczące w doświadczeniu (28., 56., 70. oraz 100. dzień), w przypadku zwierząt mieszczących się w standardzie od 0 do 12 kg, przyjęto wartość kilograma za 0 PLN, ze względu na brak możliwości sprzedaży.

1.4 Analizy parazytologiczne

Wszystkie pobrane próbki kału zostały poddane analizom parazytologicznym, które miały na celu określenie składu gatunkowego pasożytów oraz ekstensywności i intensywności lub abundancji inwazji pasożytniczych. W celu określenia ekstensywności inwazji pasożytów przewodu pokarmowego zastosowano metody flotacyjne z wykorzystaniem nasyconego roztworu chlorku sodu (NaCl) i sacharozy (o ciężarze właściwym 1.25 g / ml) (Dryden i wsp., 2005). Stwierdzone jaja oraz oocysty klasyfikowano do poziomu rodziny i rodzaju na podstawie cech morfologicznych. Wykonano również badania ilościowe pobranego materiału w celu określenia liczby oocyst w gramie kału (OPG- oocyst per gram) oraz liczby jaj w gramie kału (EPG- eggs per gram) metodą McMastera w modyfikacji Raynaud (Raynaud, 1970; Kochanowski i wsp., 2013).

1.5 Analiza statystyczna

Wszystkie wyniki doświadczeń zostały poddane analizie statystycznej.
Analizując wpływ rasy statystyczne różnice pomiędzy wartościami ekstensywności zostały potwierdzone przy pomocy testu chi-kwadrat. Dane analizowano przy użyciu programu „R” modułu „empir”. Natomiast przy opracowaniu statystycznym intensywności inwazji pasożytów wykorzystano procedury GLM programu Statistica 13. W celu stwierdzenia istotnych różnic pomiędzy średnimi wykorzystano test Tukeya, przy poziomie p≤0,05 i p≤0,01.

Analizując wpływ okresu fizjologicznego wyniki dotyczące intensywności inwazji opracowano statystycznie przy zastosowaniu procedury GLM, wykorzystując program Statistica 13. W celu stwierdzenia istotnych różnic pomiędzy średnimi wykorzystano test Tukeya (dla różnych liczebności), przy poziomie p≤ 0,05 i p ≤ 0,01. Natomiast statystyczne różnice pomiędzy wartościami ekstensywności zostały potwierdzone przy pomocy testu chi-kwadrat. Dane analizowane były przy użyciu programu „R” modułu „empir”.

Wyniki dotyczące wpływu żywienia na ekstensywność i intensywność inwazji u owiec matek opracowano statystycznie przy zastosowaniu procedury GLM, wykorzystując program Statistica 13. W przypadku jagniąt przed analizą liczba oocyst została przeliczona na logarytmy naturalne (log [OPG+1]), a następnie dane analizowano za pomocą analizy wieloczynnikowej wariancja (ANOVA czynnikowa z interakcją), Statistica program (system oprogramowania do analizy danych), wersja 6 (StatSoftInc., 2003). W celu stwierdzenia istotnych różnic pomiędzy średnimi wykorzystano test Tukeya (dla różnych liczebności), przy poziomie p≤0,05 i p≤0,01. Natomiast statystyczne różnice pomiędzy wartościami ekstensywności zostały potwierdzone przy pomocy testu chi-kwadrat. Dane analizowane były przy użyciu programu „R” modułu „empir”.

Analizując wpływ żywienia na efekt ekonomiczny produkcji jagniąt wyniki dotyczące mas ciała uzyskanych przez jagnięta w poszczególnych standardach wagowych opracowano statystycznie z zastosowaniem procedury GLM i z wykorzystaniem programu Statistica 13.
Wyniki

Ocena wpływu rasy (Dudko i wsp.2017a – „Ocena wrażliwości na inwazje pasożytnicze wybranych ras owiec z terenu Lubelszczyzny”)

Ocenę wrażliwości wybranych ras owiec na inwazje pasożytnicze przeprowadzono w czterech okresach: wiosna, lato, jesień i zima. W okresie jesieni i zimy istotnie najniższą ekstensywność inwazji *Eimeria* spp. stwierdzono u owiec uhruskiej 15,71%- w obu okresach w porównaniu do linii syntetycznej bcp- 44,29% jesienią i 45,71% zimą (p≤0,01) oraz scp- 38,57% w obu okresach (p≤0,05). Podobne tendencje odnotowano w okresie zimy, a różnice pomiędzy grupą owiec uhruskich (14,29%) okazały się statystycznie istotne (p≤0,05) w porównaniu do owiec linii bcp (40,00%) i scp (37,71%). W okresie lata procent zarażonych owiec w poszczególnych grupach był wyrównany, niemniej jednak warto zaznaczyć, że także w tym przypadku najniższy był w grupie owiec uhruskich. Analiza ekstensywności inwazji nicieni z rodziny *Trichostrongylidae* wykazała, że w okresie jesieni, zimy oraz wiosny ilość zarażonych owiec rasy uhruskiej była ok. 5 -8 krotnie istotnie niższa (p≤0,01) w porównaniu do owiec linii syntetycznych bcp i scp. W okresie lata różnica uległa zwiększeniu, jednak w dalszym ciągu była ona około 2-krotnie niższa (p≤0,05) u owiec rasy uhruskiej. Analiza ekstensywności zarażeń nicieniami z rodzaju *Capillaria* wykazała istotne różnice (p≤0,01) jedynie w okresie lata pomiędzy grupą owiec uhruskich (2,86%) a zwierzętami obu linii syntetycznych (20,00%). Owce uhruskie charakteryzowały się także mniejszą wrażliwością na zarażenia nicieniami *Nematodirus* wyliczona ekstensywność była 7- do ok. 28-krotnie niższa (p≤0,01) w porównaniu do obu analizowanych linii syntetycznych (p≤0,01).

Intensywność inwazji była w większości przypadków wyrównana w poszczególnych grupach. Jedynie pomiędzy rasą uhruską a linią scp stwierdzono istotne różnice (p≤0,05) w okresie wiosny w przypadku nicieni z rodziny *Trichostrongylidae* oraz w okresie lata dla pierwotniaków rodzaju *Eimeria* spp.

Ocena wpływu okresu fizjologicznego (Dudko i wsp. 2017b – „Zmienność ekstensywności i abundancji inwazji pasożytniczych u owiec w różnych stanach fizjologicznych”)

Oceniając ekstensywność inwazji pasożytniczych w różnych stanach fizjologicznych owiec, stwierdzono najniższy procentowy udział zarażonych zwierząt pierwotniakami *Eimeria* spp. w 28. dniu po wykotach (8,14%), natomiast najwyższy w okresie jałowości (61,17%). W
przypadku nicieni z rodziny *Trichostrongylidae* najniższy poziom zaobserwowano po wykotach (11,11%), a najwyższy w okresie jałowości (59,22%). Ekstensywność dla nicieni z rodzaju *Capillaria* kształtowała się od 1,16% (28. dzień) do 19,42% w okresie jałowości.

Podobnie jak w poprzednim przypadku, najwyższą ekstensywność inwazji *Nematodirus* stwierdzono w okresie jałowości 23,30% natomiast najniższą w 42. dniu (1,12%). W drugim roku obserwacji najniższy poziom ekstensywności inwazji *Eimeria* spp. odnotowano 56. dnia po wykotach (28,70%), a najwyższy podobnie, jak w pierwszym roku, w okresie jałowości (56,20%). Ponad 1,5 razy wyższą ekstensywność inwazji nicieni *Trichostrongylidae* stwierdzono podczas ciąży (73,47%) w porównaniu do okresu zasuszania (43,70%). Natomiast dla nicieni z rodzaju *Capillaria* uzyskane wartości kształtowały się na poziomie od 3,45% (42. dzień) do 22,31% w okresie jałowości. Najniższy poziom ekstensywności inwazji nicieni *Nematodirus* stwierdzono w okresie zasuszienia (25,21%) a najwyższy w 28. dniu po wykotach (48,21%). Analiza abundancji *Eimeria* spp. wykazała najniższy poziom w 28. dniu po wykotach (33,33 OPG), a najwyższy w okresie jałowości (155,36 OPG). Podobne tendencje zaobserwowano dla nicieni *Trichostrongylidae* gdzie wartość abundancji wynosiła odpowiednio 37,37 i 98,66 EPG. W przypadku nicieni z rodzaju *Capillaria* abundancja wynosiła od 3,65 w 42. dniu do 21,88 EPG w okresie jałowości, natomiast dla *Nematodirus* od 18,45 w okresie zasuszzenia do 38,69 EPG w okresie ciąży.

Ocena wpływu żywienia matek paszą z dodatkiem preparatu zawierającego roślinne olejki eteryczne na występowanie zarażeń pasożytniczych (Bojar i wsp. 2017 a – „Wpływ suplementacji diety preparatem zawierającym olejki eteryczne z Origanum vulgare (Lamiacea) and Citrus spp. (Citraceae) w aspekcie profilaktyki inwazji pasożytów przewodu pokarmowego owiec”)

Jedną z metod profilaktyki przeciwpasożytniczej w stadach owiec jest stosowanie preparatów zawierających olejki eteryczne. Analiza skuteczności preparatu, którego bazą były olejki eteryczne z *Origanum vulgare* (Lamiacea) i *Citrus* spp. (Citraceae) wykazała w 2. dniu po wykocie niższe (p≤0,05) wartości ekstensywności *Eimeria* spp w grupie 2. (10,87%) i 3 (6,12%) w porównaniu do grupy kontrolnej -1. (22,22%). W 28. dniu zarówno w grupie 2. i 3. nie stwierdzono oocyst w kale natomiast w grupie 1. ekstensywność wynosiła 17,78% (p≤0,01). W 42., 56. oraz 70. dniu od wykotu odnotowano wzrost ekstensywności inwazji w grupie 2., w której wartości zbliżyły się do grupy 1. Należy zwrócić uwagę, że najniższą ekstensywność we wszystkich omawianych terminach stwierdzono w grupie 3. natomiast najwyższe w grupie 1.
We wszystkich przypadkach różnice okazały się statystycznie istotne (p≤0,05). Statystycznie istotne różnice ekstensywności nicieni żołądkowo-jelitowych (p≤0,05) pomiędzy grupami odnotowano w 2. dniu po wykocie między grupą 2. a 3., w 28. dniu pomiędzy grupą 1. (22,22%) a 3. (6,12%), w 42. dniu (2. a 3.) oraz w 70. dniu między grupą 1. (48,89%) a 3. (26,53%). Zastosowana profilaktyka przeciwpasożytnicza wpłynęła na obniżenie ekstensywności w 2. oraz 28. dniu po wykocie w grupach 2. i 3., w których nie odnotowano jaj Capillaria w kale, natomiast w grupie 1. w obu terminach procent zarażonych osobników wynosił 4,44%. W 42. dniu we wszystkich grupach nie odnotowano jaj nicieni Capillaria. W 56. i 70. dniu po wykocie nastąpił wzrost (p≤0,05) ekstensywności w grupie 1. (4,44 i 8,89 %) oraz 2. (4,35 i 6,52%) w porównaniu do grupy 3. suplementowanej preparatem przez cały okres doświadczenia, w której nie stwierdzono jaj w kale.

Ocena wpływu żywienia jagńcik paszą z dodatkiem preparatu zawierającego roślinne olejki eteryczne na występowanie zarażeń pasożytniczych (Dudko i wsp. 2018 – „Effect of dietary supplementation with preparation comprising the blend of essential oil from Origanum vulgare (Lamiaceae) and Citrus spp. (Citraceae) on coccidia invasion and lamb growth”)

Analizując wpływ preparatu zawierającego olejki eteryczne z Origanum vulgare (Lamiaceae) i Citrus spp. (Citraceae) na występowanie zarażeń pasożytnicznych u jagniast stwierdzono w wieku 28 dni istotne różnice (p≤0,01) pomiędzy ekstensywnością występowania Eimeria spp. w grupie 2. (6,67%) i grupie 1. (29,89%). Także intensywność inwazji w tym okresie była najniższa w grupie 2. (średnia log OPG - 0,095), a najwyższa w grupie 1. (średnia log OPG 0,731). W 42. dniu życia jagnię ekstensywność wzrosła o 9,19, 43,81 i 47,62 punktów procentowych odpowiednio w grupach 1., 2. i 3. Różnica między grupami 1. i 3. była statystycznie istotna (p≤0,01). Najwyższą intensywność inwazji w tym okresie stwierdzono w grupie 3. (średnia log OPG 2,439), w porównaniu do grupy 1. (średnia log OPG 0,745) i grupy 2. (średnia log OPG 0,789). W następnym pobraniu w 56. dniu nastąpił spadek zawartości w kale oocyst Eimeria spp. w grupie suplementowanej preparatem opartym na naturalnych olejkach (grupa 3. - 46,43%), podczas gdy częstość występowania nadal wzrastała w dwóch pozostałych grupach (grupa 1.- 80,46 i grupa 2.- 66,62%). Różnice między grupą 3. a grupą 1. były statystycznie istotne (p≤0,01). Podobnie jak w przypadku ekstensywności, intensywność inwazji była najwyższa (p≤0,01) w grupie 1. (średnia log OPG 2,283), podczas gdy najniższa intensywność była obserwowana w grupie 2. (średnia log OPG 1,107) i grupie 3. (średnia log OPG - 1,071). Podobny trend zarówno intensywności inwazji, jak i ekstensywności
zaobserwowano w wieku 70. dni. Warto zauważyć, że ekstensywność inwazji w grupie jagniąt karmionych dietą suplementowaną olejkiem eterycznym z *Origanum vulgare* i *Citrus* spp. była mniejsza - 42,86% (p≤0,01) niż obserwowana w grupie 1. - 96,55% i 2. - 90,48%. Podobne tendencje odnotowano w przypadku intensywności, która była najniższa (p≤0,01) w grupie 3. w porównaniu do grupy 1. i 2. Pozytywny wpływ dodatku kokcydiostatycznego został także potwierdzony podczas analizy obowiązujących przyrostów masy ciała. We wszystkich analizowanych okresach przyrosty masy ciała jagniąt były najwyższe w grupie 3. w porównaniu do pozostałych dwóch grup. Wyniki badania ultrasonograficznego wykazały najniższą grubość tkanki tłuszczowej w grupie 3. - 3,20 mm w porównaniu do grupy 1. - 4,23 mm i 2. - 3,85 mm. Natomiast średnia głębokość mięśnia *longissimus dorsi* była najwyższa w grupie 3. - 25,78 mm w porównaniu do dwóch pozostałych grup (grupa 1. - 22,21 mm i grupa 2. - 22,33 mm)

Ocena wpływu żywienia owiec paszą z dodatkiem preparatu zawierającego roślinne olejki eteryczne na efekt ekonomiczny produkcji jagniąt rzeźnych (Dudko, 2017c – „Wpływ suplementacji diety preparatem zawierającym olejki eteryczne z *Origanum vulgare* (Lamiaceae) i *Citrus* spp. (Citraceae) na efekt ekonomiczny produkcji jagniąt rzeźnych”)

Na podstawie okresowych ważeń mas ciała oszacowano wartość jagniąt. W 28. dniu średnia wartość za jedno jagnię wynosiła w grupie 1. od 0,00 zł w standardzie wagowym (sw) 0-12 kg do 145,50 zł (sw 13-16 kg), w grupie 2. od 0,00 (sw 0-12 kg) do 152,98 zł (sw 13-16 kg), a w grupie 3. od 0,00 (sw 0-12 kg) do 153,20 zł (sw 13-16 kg). W 56. dniu średnie wartości uzyskane za jedno jagnię kształtowały się w grupie 1. od 0,00 (sw 0-12 kg) do 213,57 zł (sw 23-30 kg), od 0,00 do 204,97 zł w grupie 2. oraz w grupie 3. od 0,00 do 206,57 zł analogicznie w tych samych standardach wagowych. Kolejnym analizowanym okresem był 70. dzień, w którym w grupie 3. nie stwierdzono jagniąt w najniższym standardzie wagowym (0-12 kg), a średnia wartość jagnięcia kształtowała się od 162,25 zł (sw 13-16 kg) do 234,90 zł (sw 31-35 kg). Natomiast wartości w grupie 1. wyniosły od 0,00 (sw 0-12 kg) do 251,82zł (31-35 kg), a w grupie 2. od 0,00 (sw 0-12 kg) do 232,18zł (sw 31-35 kg). Ostatnim analizowanym okresem był 100. dzień, w którym średnia wartość za jedno jagnię wyniosła w grupie 1. od 173,81 (sw 13-16 kg) do 284,56zł (sw 36-40 kg), w grupie 2. od 165,36 (sw 13-16 kg) do 278,77 zł (sw 36-40 kg), a w grupie 3. od 201,05 (sw 17-22 kg) do 283,99 zł (sw 36-40 kg). Na podstawie uzyskanych wartości obliczono procentową różnicę w wartości jagniąt pomiędzy grupami doświadczalnymi a grupą kontrolną. Wartość jagniąt w 28. dniu w grupie otrzymującej preparat zawierający olejki z *Origanum vulgare* (Lamiaceae) oraz *Citrus* spp. (Citraceae) była wyższa o
45,17%, a w grupie 2. o 26,08% niższa w porównaniu do grupy 1. W 56. dniu różnice te uległy zmniejszeniu. Średnie wartości jagniąt w grupie 3. były wyższe o 16,11% natomiast w grupie 2. o 5,52% niższe w porównaniu do wartości uzyskanych w grupie kontrolnej. W 70. oraz 100. dniu wartość jagniąt w grupie 3. była wyższa odpowiednio o 10,06% i 7,83% w porównaniu do grupy 1. Natomiast w grupie 2. utrzymała się niekorzystna tendencja odnotowana w poprzednim okresie. Wartość jagniąt omawianej grupy w porównaniu do grupy kontrolnej była niższa o 8,98% (70. dzień) i 1,35% (100. dzień).
Podsumowanie i wnioski

Na podstawie uzyskanych wyników można sformułować następujące podsumowania i wnioski:

• Stwierdzono istotnie niższą ekstensywność inwazji pasożytów u owiec rasy uhruskiej w porównaniu do obu linii syntetycznych bcp i scp.
• Najwyższe wartości ekstensywności jak i abundancji inwazji pierwotniaków z rodzaju *Eimeria* oraz nicieni *Trichostrongylidae* oraz *Capillaria* zaobserwowano w okresie zasuszania i jałowości.
• Zastosowanie preparatu zawierającego olejki eteryczne z *Origanum vulgare* (Lamiacea) i *Citrus* spp. (Citraceae) wpływało na obniżenie ekstensywności inwazji *Eimeria* spp., *Trichostrongylidae* o raz *Capillaria* u owiec matek.
• Odnotowano istotny wpływ suplementacji diety jagniąt preparatem kokcydiostatycznym na obniżenie ekstensywności oraz intensywności inwazji pierwotniaków z rodzaju *Eimeria*. Stwierdzono także jego korzystny wpływ na wzrost jagniąt w całym okresie odchowu.
• Ograniczenie inwazji kokcydiów u jagniąt w wyniku żywienia paszą z dodatkiem olejków eterycznych wpłynęło korzystnie na końcowy wynik ekonomiczny zwiększając wpływy za żywiec rzeźny od 7,83 do 45,17% w zależności od wieku jagniąt.
• W przypadku stwierdzonej, na podstawie badania parazytologicznego, konieczności przeprowadzenia zabiegów odrobaczających najkorzystniejszym terminem, ze względu na najwyższe wartości ekstensywności jak i abundancji inwazji, jest okres zasuszania i jałowości.
• Wykorzystanie ras o mniejszej wrażliwości na zarażenia w połączeniu z żywieniem paszą zawierającą roślinne substancje bioaktywne o działaniu przeciwpasożytniczym może stanowić alternatywę dla stosowania tradycyjnych środków chemicznych w profilaktyce przeciwpasożytniczej stad owiec.
Piśmiennictwo

various antiparasitic treatments on lamb growth and mortality. Small Ruminant Res. 123, 305–312.
Prace stanowiące cykl publikacji

5. Dudko P. 2017c. Wpływ suplementacji diety preparatem zawierającym olejki eteryczne z *Origanum vulgare* (Lamiacea) and *Citrus* spp. (Citraceae) na efekt ekonomiczny produkcji jagniąt rzeźnych. Journal of Animal Science, Biology and Bioeconomy 35(4), 37-44. (MNiSW 7 pkt)
Wśród czynników mających znaczący wpływ na opłacalność hodowli zwierząt, jest ich zdrowotność, która warunkuje ich wzrost i rozwój (8). W produkcji owczarskiej głównym problemem są zarażenia pasożytnicze, które mogą prowadzić do strat w produkcji wełny, mięsa i mleka (16). W wielu przypadkach przebiegają one bezobjawowo i są niezauważane przez hodowców, jednak nie pozostają bez wpływu na zdrowie i wzrost zwierząt. Inwazje pasożytnicze przywodzą do zmniejszenia wchłaniania składników odżywczych z pokarmu, co w konsekwencji prowadzi do zmniejszenia przyrostów i strat ekonomicznych (2, 4, 9). Jedną z głównych metod zwalczania inwazji pasożytnicznych jest stosowanie preparatów chemioterapeutycznych. Środki te są skuteczne, jednak metoda obarczona jest wieloma przeciwwskazaniami oraz ryzykiem uodporniania się pasożytów na rutynowo stosowane leki. W związku z tym promowane są obecnie połączone systemy zwalczania pasożytów, które opierają się na wykorzystaniu zwiększonej odporności gospodarza (genetycznej i niegenetycznej), ograniczonym lub kontrolowanym narażeniu na występujące postacie dyspersyjne pasożytów (strategie wypasu), kontroli biologicznej czy też monitorowaniu zarażeń jako podstawy zarządzania (10). Poznanie czynników mających wpływ na zarażenia wydaje się kluczowe w opracowywaniu strategii przeciwpasożytniczych.

Wśród głównych czynników można wyróżnić: płeć, masę ciała, stan reprodukcyjny, czynniki środowiskowe, różnice występujące pomiędzy różnymi rasami zwierząt (13, 18, 20). Interesującym kierunkiem wydaje się wykorzystanie metod selekcyjnych w programach hodowlanych zmierzających do wyhodowania zwierząt

Praca oryginalna

Ocena wrażliwości na inwazje pasożytnicze wybranych ras owiec z terenu Lubelszczyzny

PAULINA DUDKO, ANDRZEJ JUNKUSZEW, WIKTOR BOJAR, KLAUDIUSZ SZCZEPANIAK*, KRZYSZTOF TOMCZUK*

*Zakład Parazytologii i Chorób Inwazyjnych, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, u. Akademicka 12, 20-950 Lublin

Otrzymano 20.06.2017

Zaakceptowano 06.09.2017

Dudko P., Junkuszew A., Bojar W., Szczepaniak K., Tomczuk K.

Differentiation of vulnerability to parasitic infections in various breeds of sheep in the Lubelskie region

Summary

The aim of the study was to compare the prevalence and intensity of parasitic invasions between Uhruska sheep (a local breed protected in a genetic resources protection program) and two synthetic sheep lines: BCP and SCP. The sheep were kept in the same flock in a combined indoor-pasture management system with unified feeding and environmental conditions. The observed farm is located in south-east Poland. The study animals were 210 mother ewes of similar age (Uhruska breed – 70 sheep, synthetic prolific-meat BCP line – 70 sheep, SCP synthetic line – 70 sheep). The study material was faeces collected from the rectum of every mother ewe in autumn (November), winter (January), spring (April) and summer (June). On the basis of the obtained results, the following parasites were detected: Eimeria spp. and nematodes from the family Trichostrongylidae, as well as the genera Capillaria and Nematodirus. It was shown that in almost all cases the invasion intensity was similar, while the prevalence of parasitic invasion was significantly lower in local Uhruska breed sheep than in synthetic lines. This could stem from the better adaptation of the animals to the environmental conditions. The results of the observations indicate a need for further studies on the resistance of local breeds to parasitic invasions. The use of resistance breeds may be helpful in effective breeding work aimed at reducing the risk of infection. Such activity could lead to better growth and fewer deaths, which would certainly contribute to an improved profitability of sheep production.

Keywords: sheep, breed, parasites, resistance
wykazujących się większą odpornością na inwazje pasożytnicze. Jest to istotne, zwłaszcza, że koszty związane ze zwalczaniem pasożytów są wysokie (5, 21).

Celem niniejszej pracy było porównanie wrażliwości na inwazje pasożytnicze pomiędzy rąg lokalną a dwiema liniami syntetycznymi owiec utrzymanych w tym samym stadzie w systemie alkierzowo-pastwiskowym.

Materiał i metody

Badania przeprowadzono w eksperymentalnej stacji Bezek, należącej do Uniwersytetu Przyrodniczego w Lublinie, położonej w południowo-wschodniej części Polski. Materiał zwierzęcy stanowiło 210 owiec matek (uhruska – 70 owiec, syntetyczne linie pleno-mięsne bcp (7) – 70 owiec oraz scp (7) – 70 owiec). Wybrane rasy zwierząt stanowiły ok. 95% populacji owiec utrzymanych na Lubelszczyźnie (7). Zwierzęta były utrzymiane w jednym gospodarstwie w systemie alkierzowo-pastwiskowym, w stałych warunkach żywieniowo-środowiskowych, pod stałą kontrolą zootechniczną (25-25 maciorów na 1 tryka) w okresie od 1 sierpnia do 15 września, zgodnie z zasadami przyjętymi w stadach zarodowych. Wykoty w analizowanych stadach odbywały się w miesiącach styczniu i lutym. Owce matki przebywaly wraz z macierzą przez całą czas lactacji, trwający do 70. dnia od urodzenia jagniąt. Począwszy od maja do rozpoczęcia stanówki (1 sierpnia) było określone intensywność i ekstensywność inwazji przeprowadzono badania parazytologiczne, których celem było określenie intensywności i ekstensywności inwazji pasożytniczych przewodu pokarmowego u owiec matek. Materiał badawczy stanowił kał pobrany z prostnice od owiec matek w okresie jesieni (listopad), zimy (styczeń), wiosny (kwiecień) oraz lata (kwiecień). W celu określenia ekstensywności inwazji poszczególnych ras lub rodzajów pasożytniczych zastosowano badania koproskopowe. Następnie badania przeprowadzano systemem haremowym (po 25-28 maciorów w stadzie). Obserwacje prowadzono systemem haremowym (po 25-28 maciorów w stadzie).

Badania parazytologiczne. W trakcie doświadczenia przeprowadzono badania parazytologiczne, których celem było określenie intensywności i ekstensywności inwazji pasożytów przewodu pokarmowego w owieczkach. Materiał badawczy stanowił kał pobrany z prostnice od owiec matek w okresie jesieni (listopad), zimy (styczeń), wiosny (kwiecień) oraz lata (kwiecień). W celu określenia ekstensywności inwazji poszczególnych ras lub rodzajów pasożytniczych zastosowano badania koproskopowe. Następnie badania przeprowadzano systemem haremowym (po 25-28 maciorów w stadzie). Obserwacje prowadzono systemem haremowym (po 25-28 maciorów w stadzie).

Badania statystyczne. Statystyczne różnice pomiędzy wartościami ekstensywności były potwierdzone przy pomocy testu Tukey’a, przy poziomie p ≤ 0,05 i p ≤ 0,01.

Wyniki i omówienie

W niniejszych badaniach podjęto próbę porównania zarówno stopnia ekstensywności, jak i intensywności inwazji pomiędzy rasą lokalną a dwiema liniami syntetycznymi owiec utrzymanych w tym samym stadzie w systemie alkierzowo-pastwiskowym.

Tab. 1. Ekstensywność inwazji pasożytów w przebiegu doświadczenia

<table>
<thead>
<tr>
<th>Pora roku</th>
<th>Oryginalny</th>
<th>Uprawowalny</th>
<th>Uprawowalny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jesień</td>
<td>Eimeria spp. 15,71a</td>
<td>44,29a</td>
<td>38,57a</td>
</tr>
<tr>
<td></td>
<td>Trichostrongylidae 10,00a</td>
<td>65,71a</td>
<td>62,66a</td>
</tr>
<tr>
<td></td>
<td>Capillaria spp. 5,71</td>
<td>15,71</td>
<td>12,86</td>
</tr>
<tr>
<td></td>
<td>Nematodirus 1,43a</td>
<td>40,00b</td>
<td>38,57a</td>
</tr>
<tr>
<td>Zima</td>
<td>Eimeria spp. 15,71a</td>
<td>45,71a</td>
<td>38,57a</td>
</tr>
<tr>
<td></td>
<td>Trichostrongylidae 8,57a</td>
<td>68,57a</td>
<td>64,29a</td>
</tr>
<tr>
<td></td>
<td>Capillaria spp. 1,43a</td>
<td>15,71</td>
<td>14,29a</td>
</tr>
<tr>
<td></td>
<td>Nematodirus 5,71a</td>
<td>41,43a</td>
<td>38,57a</td>
</tr>
<tr>
<td>Wiosna</td>
<td>Eimeria spp. 14,29a</td>
<td>40,00a</td>
<td>37,71a</td>
</tr>
<tr>
<td></td>
<td>Trichostrongylidae 12,86a</td>
<td>61,43a</td>
<td>62,66a</td>
</tr>
<tr>
<td></td>
<td>Capillaria spp. 0,00</td>
<td>4,29</td>
<td>4,29</td>
</tr>
<tr>
<td></td>
<td>Nematodirus 1,43a</td>
<td>28,57a</td>
<td>32,86a</td>
</tr>
<tr>
<td>Lato</td>
<td>Eimeria spp. 44,29</td>
<td>47,14</td>
<td>50,00</td>
</tr>
<tr>
<td></td>
<td>Trichostrongylidae 34,29a</td>
<td>65,71a</td>
<td>55,71a</td>
</tr>
<tr>
<td></td>
<td>Capillaria spp. 2,86a</td>
<td>20,00b</td>
<td>20,00b</td>
</tr>
<tr>
<td></td>
<td>Nematodirus 1,43a</td>
<td>30,00b</td>
<td>31,43b</td>
</tr>
</tbody>
</table>

Objaśnienia: a, b; A, B – średnie oznaczone różnymi literami różnią się istotnie w wierszach małymi przy p ≤ 0,05, dużymi przy p ≤ 0,01
nicie pomiędzy rasą uhruską a obiema liniami syntetycznymi były istotne statystycznie, w pierwszych omawianych okresach na poziomie p ≤ 0,01, natomiast w okresie lata p ≤ 0,05. W przypadku analizy wartości ekstensywności inwazji nicien z rodzaju Capillaria nie stwierdzono, z wyjątkiem okresu letniego, istotnych różnic pomiędzy poszczególnymi grupami. W lecie odsetek zarazonych owiec wahał się od 2,86% u owiec uhruskich do 20,00% u obu linii syntetycznych, różnicę te były wysoce istotne (p ≤ 0,01). Na większą odporność rasy uhruskiej na zarażenia owiec nicieniami Nematomoridus wskazują uzykane wartości ekstensywności, która była od ok. 7- do ok. 28-krotnie niższa zasięgu występowania (8). Lokalne występowanie nicien wynikające właśnie z lepszego przystosowania do panujących warunków środowiska, co także może być pomocne w prowadzeniu skutecznej pracy odporności owiec ras lokalnych na zarażenia pasożytami jest cechą dziedziczoną. W konsekwencji sprzyjać utrwaleniu się genetycznej odporności na zarażenia pasożytami. Powyższe dane mogą mieć istotne znaczenie w interpretacji wyników niniejszego doświadczenia, wskazując na naturalne zwiększanie się odporności owiec ras lokalnych na zarażenia pasożyticzne wynikające właśnie z lepszego przystosowania do panujących warunków środowiska. Opisane wyniki badań i obserwacji powinny być brane pod uwagę podczas opracowywania programów ochrony przeciwpasożyticznej stad owiec, szczególnie w Australii i Nowej Zelandii. Polegały one na dobór odpowiednich zwierząt w obrębie rasy bardziej odpornych na zakażenia pasożyticznne. W konsekwencji doprowadziło to do zmian w dynamice inwazji i po kilku pokoleniach do znaczącego wzrostu odporności na pasożytów (19). Określenie odporności występujących w danym regionie ras na inwazje pasożytów może być pomocne w prowadzeniu skutecznej pracy hodowlanej zmierzającej do zmniejszenia ryzyka zarazień. Konsekwencją takich działań powinien być lepszy wzrost oraz zmniejszenie liczby upadków zwierząt, co z pewnością przyczyni się do poprawy opłacalności produkcji owiec.

| Tab. 2. Intensywność inwazji pasożytów w przebiegu doświadczenia (x ± SE) |
|---------------------------------|-----------------|-----------------|
| **Pora roku** | **Passyzt** | **Owca uhruska** | **Rasa owiec** |
| | | **bcp** | **scp** |
| **Jesień** | Eimeria spp. | 136,36 ± 20,33 | 133,33 ± 8,93 | 137,50 ± 12,50 |
| | Trichostrongylidae | 114,29 ± 14,29 | 130,30 ± 8,12 | 125,93 ± 8,59 |
| | Capillaria spp. | 125,00 ± 25,00 | 125,00 ± 16,37 | 116,67 ± 16,67 |
| | Nematomoridus | 100,00 ± 0,00 | 117,65 ± 9,53 | 136,84 ± 11,37 |
| | Eimeria spp. | 145,45 ± 36,59 | 133,33 ± 8,75 | 128,00 ± 9,17 |
| | Trichostrongylidae | 150,00 ± 34,16 | 122,92 ± 6,13 | 131,11 ± 6,98 |
| | Capillaria spp. | 100,00 ± 0,00 | 118,18 ± 12,20 | 110,00 ± 10,00 |
| | Nematomoridus | 100,00 ± 0,00 | 120,69 ± 7,66 | 137,04 ± 9,47 |
| **Zima** | Eimeria spp. | 130,00 ± 15,28 | 117,86 ± 7,37 | 140,00 ± 11,24 |
| | Trichostrongylidae | 211,11 ± 42,31 | 151,16 ± 7,16 | 136,36 ± 7,34 |
| | Capillaria spp. | 0,00 ± 0,00 | 133,33 ± 33,33 | 133,33 ± 33,33 |
| | Nematomoridus | 100,00 ± 0,00 | 115,00 ± 8,19 | 117,39 ± 8,08 |
| **Wiosna** | Eimeria spp. | 250,00 ± 24,82 | 109,09 ± 5,08 | 114,29 ± 6,00 |
| | Capillaria spp. | 170,83 ± 18,53 | 145,65 ± 7,43 | 161,54 ± 7,89 |
| | Nematomoridus | 100,00 ± 0,00 | 107,14 ± 7,14 | 107,14 ± 7,14 |
| **Lato** | Eimeria spp. | 125,00 ± 16,37 | 125,00 ± 16,37 | 116,67 ± 16,67 |
| | Trichostrongylidae | 125,00 ± 16,37 | 125,00 ± 16,37 | 116,67 ± 16,67 |
| | Capillaria spp. | 100,00 ± 0,00 | 107,14 ± 7,14 | 107,14 ± 7,14 |

Objaśnienia: jak w tab. 1.
Piśmiennictwo

Adres autora: mgr inż. Paulina Dudko, ul. Akademicka 13, 20-950 Lublin; e-mail: dudko.paulina@gmail.com
Ze względu na narastającą oporność pasożytów na chemioterapeutyki coraz trudniejsza staje się ochrona zwierząt przed inwazjami pasożytniczymi. Metodami, które mogą stanowić alternatywę dla tradycyjnego postępowania, jest zastosowanie różnych strategii profilaktycznych (1). Skuteczne ich wprowadzenie do praktyki wymaga szeregu badań mających na celu dokładne zdiagnozowanie i określenie newralgicznych okresów, a także optymalnego terminu pobrania prób do badań parazytologicznych w stadach zwierząt (15).

Istotne jest też dokładne poznanie czynników zarówno egzogennych, jak i endogennych, które wpływają na inwazje pasożytnicze. Zalicza się do nich m.in.: płeć, masę ciała, wiek, czynniki środowiskowe, metody zarządzania stadem, stan zdrowotny, predyspozycje genetyczne zwierząt (11, 17). Określenie czynników ryzyka pozwala opracować skuteczne strategie zwalczania inwazji pasożytniczych. Należy podkreślić, że stosowane dotychczas metody oparte na chemioprofilaktyce są skuteczne, jednak niosą ze sobą duże ryzyko uodpornienia się pasożytów na substancje lecznicze (13). Problem lekooporności m.in. nicieni żołądkowo-jelitowych na rutynowo używane antyhelminty w hodowli owiec stwierdzono w wielu krajach świata.

1) Projekt „Kierunki wykorzystania oraz ochrona zasobów genetycznych zwierząt gospodarskich w warunkach zrównoważonego rozwoju” współfinansowany przez Narodowe Centrum Badań i Rozwoju w ramach Strategicznego programu badań naukowych i prac rozwojowych „Środowisko naturalne, rolnictwo i leśnictwo” – BIOSTRATEG, nr umowy: BIOSTRATEG2/297267/14/NCBR/2016.
(12). W związku z tym wydaje się, że w przyszłości kontrola pasożytów powinna opierać się głównie na wspomaganiu odporności zwierząt na drodze żywniowej, stosowania substancji aktywnych pochodzenia roślinnego, a dopiero po wyczerpaniu innych metod na wykorzystaniu chemioterapii (1, 5, 9). Skuteczność ich zastosowania wymaga jednak określenia optymalnych terminów przeprowadzenia zabiegów przeciwpażyt niczych w stadzie owiec. Mając na względzie powyższe dane, podjęto badania mające na celu określenie stopnia inwazji pasożytami w różnych stanach fizjologicznych, a także prześledzenie zmian dynamiki inwazji pasożytów w stadzie owiec utrzymywanych w systemie alkierzowo-pastwiskowym.

Materiał i metody

Badania przeprowadzono w eksperymentalnej stacji Bezek należącej do Uniwersytetu Przyrodniczego w Lublinie, położonej w południowo-wschodniej części Polski. W gospodarstwie utrzymywanych jest 550 sztuk owiec matek.

Charakterystyka zootechniczna stada owiec. Obserwacje prowadzone na 224 owaczkach matkach syntetycznej linii pleno-mięsnej scp w okresie kolejnych dwóch lat. W pierwszym roku liczność zwierząt wynosiła 103, a w drugim 121 sztuk owiec matek. Zwierzęta utrzymywane były w systemie alkierzowo-pastwiskowym, w ujednoliconych warunkach środowiskowo-żywieniowych, pod stałą kontrolą zootechniczno-weterynaryjną. Owce matki uczestniczące w doświadczeniu nie były odrobaczane w przeciągu roku, natomiast najniższą w 42. dniu (1,12%). Zwierzęta nie były odrobaczane w roku badań ani w roku poprzedzającym.

Obliczenia statystyczne. Wyniki dotyczące intensywności inwazji opracowano statystycznie przy zastosowaniu procedury GLM, wykorzystując program Statistica 13. Do analizy zastosowano następujący model matematyczny:

\[Y_{ij} = \mu + O_i + R_j + e_{ij} \]

gdzie poszczególne symbole oznaczają: \(Y_{ij} \) – poziom analizowanej cechy, \(\mu \) – średnia wartość cechy dla populacji, \(O_i \) – stały wpływ okresu, \(R_j \) – stały wpływ roku, \(e_{ij} \) – błąd losowy.

W celu stworzenia istotnych różnic pomiędzy średnimi wykorzystano test Tukey’a (dla różnych liczebności), przy poziomie \(p \leq 0,05 \) i \(p \leq 0,01 \). Natomiast statystyczne różnice pomiędzy wartościami ekstensywności zostały potwierdzone przy pomocy testu chi-kwadrat. Dane analizowane były przy użyciu programu „R” modułu „empr” (16).

Wyniki i omówienie

W badaniach własnych podjęto próbę scharakteryzowania punktów krytycznych dla zarażeń pasożytowym w stadzie owiec utrzymywanych w systemie alkierzowo-pastwiskowym, który jest typowy dla rejonu Europy Środkowo-Wschodniej (7). W tabeli 1 przedstawiono ekstensywność zarażeń poszczególnymi pasożytami w zależności od stanu fisiologicznego. Najniższą ekstensywność pierwotniaków z rodzaju *Eimeria* spp. stwierdzono w 28. dniu po wykotach (8,14%), natomiast najwyższą w okresie jałowości (61,17%). W przypadku nicien z rodziny *Trichostrongylidae* najniższy poziom zaostrzono po wykotach (11,11%), a najwyższy w okresie jałowości (59,22%). Ekstensywność dla nicien z rodzaju *Capillaria* kształtowała się od 1,16% (28. dzień) do 19,42% po wykotach. Podobnie jak w poprzednim przypadku, najwyższą ekstensywność inwazji *Nematodirus* stwierdzono po wykotach 23,30% natomiast najniższą w 42. dniu (1,12%). Zwierzęta nie były odrobaczane w roku badań ani w roku poprzedzającym. Pomimo to zarówno ekstensywność, jak i abundancja nie uległy istotnemu wzrostowi. W drugim roku obserwacji najniższy poziom ekstensywności inwazji *Eimeria* spp. odnotowano 56. dnia po wykotach (28,70%), a najwyższy w okresie jałowości (56,20%). Ponad 1,5 razy wyższą ekstensywność inwazji nicieniami *Trichostrongylidae* stwierdzono podczas ciąży (73,47%) w porównaniu do okresu zasuszania (43,70%). Natomiast dla nicien z rodzaju *Capillaria* uzyskane wartości kształtowały się na poziomie od 3,45% (42. dzień) do 22,31% w okresie jałowości. Najniższy poziom ekstensywności inwazji nicieniami *Nematodirus* stwierdzono w okresie zasuszania (25,21%), a najwyższy w 28. dniu po wykotach (48,21%). Zamieszczone w tabeli 2 wyniki abundancji wskazują, że najniższy poziom *Eimeria* spp. odnoto-
wano 28. dnia po wykotach (33,33 OPG), a najwyższy w okresie jałowości (155,36 OPG). Podobne tendencje zaobserwowano dla nicieni Trichostrongylidae, u których abundancja w 28. dniu wynosiła 37,37 EPG, a w okresie spoczynku 98,66 EPG. Niski poziom abundancji stwierdzono dla nicieni z rodzaju Capillaria, których liczba jaj w gracie kału wahała się od 3,65 w 42. dniu po wykotach do 21,88 w okresie jałowości. Natomiast dla Nematodirus najniższą abundancję odnotowano w okresie zasuszenia (18,45 EPG), a najwyższą w okresie ciąży (39,69 EPG). Stwierdzony we wszystkich przypadkach niski poziom zarażenia może stanowić istotną informację dla lekarzy i hodowców, przemawiającą za tym, że taki poziom zarzenia może korzystnie wpływać na zwiększenie poziomu odporności przez zwierzęta.

W badaniach przeprowadzonych przez Junkuszew i wsp. (9) wykazano, że utrzymanie niskiego poziomu zarażeń kokcydiami jest korzystne dla zwierząt, pozwalając na nabranie zwiększonej odporności na zarażenia.

Analizując wyniki badań własnych zauważono, że w większości przypadków najwyższym poziomem ekstensywności, jak i abundancji charakteryzował się okres jałowości. Wyższe wartości omawianych wskaźników mogły wynikać prawdopodobnie ze zmniejszonej odporności zwierząt w okresie zasuszenia, która sprzyjała zarażeniom (6). W badaniach oznaczano oocysty i jaja pasożytów w kale, jednak przy próbie ustalenia czasu zarażenia zwierząt należy mieć na uwadze okres prepatentny. Informacje te mogą być pomocne w ustaleniu strategii działań profilaktycznych przeciwko inwazjom pasożytowym. Jednym z rozwiązań, które wydaje się celowe, jest wzmacnianie układu odpornościowego, wzbogacając dietę dodatkami mineralnymi (1).

Tab. 1. Ekstensywność inwazji pasożytów w przebiegu doświadczenia

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciąża</td>
<td>I</td>
<td>37,14Aa</td>
<td>27,14Aa</td>
<td>1,43</td>
<td>8,57a</td>
<td>7,14a</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>52,04a</td>
<td>73,47A</td>
<td>1,02</td>
<td>19,39a</td>
<td>44,90a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ns</td>
<td>**</td>
<td>ns</td>
<td>ns</td>
<td>**</td>
</tr>
<tr>
<td>2. dzień</td>
<td>I</td>
<td>26,67D</td>
<td>11,11D</td>
<td>2,22</td>
<td>3,33A</td>
<td>12,22C</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>49,57a</td>
<td>69,57B</td>
<td>0,00</td>
<td>14,78A</td>
<td>42,01a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>**</td>
<td>ns</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>28. dzień</td>
<td>I</td>
<td>37,5</td>
<td>44,64A</td>
<td>0,00</td>
<td>10,71a</td>
<td>48,21D</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>**</td>
<td>ns</td>
<td>*</td>
<td>ns</td>
<td>**</td>
</tr>
<tr>
<td>42. dzień</td>
<td>I</td>
<td>20,22D</td>
<td>21,35D</td>
<td>0,00</td>
<td>2,25C</td>
<td>1,12C</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>32,76C</td>
<td>38,79G</td>
<td>0,00</td>
<td>3,45G</td>
<td>39,66C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ns</td>
<td>**</td>
<td>ns</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>56. dzień</td>
<td>I</td>
<td>19,54D</td>
<td>19,54D</td>
<td>1,15</td>
<td>2,30C</td>
<td>1,15G</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>28,70D</td>
<td>47,83C</td>
<td>0,00</td>
<td>4,35C</td>
<td>33,91C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ns</td>
<td>**</td>
<td>ns</td>
<td>ns</td>
<td>**</td>
</tr>
<tr>
<td>Zasuszenie</td>
<td>I</td>
<td>44,83D</td>
<td>35,63E</td>
<td>0,00</td>
<td>4,60E</td>
<td>3,45E</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>50,42C</td>
<td>43,70E</td>
<td>0,00</td>
<td>13,45E</td>
<td>25,21E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>Jałowość</td>
<td>I</td>
<td>61,17D</td>
<td>59,22B</td>
<td>0,00</td>
<td>19,42D</td>
<td>23,30D</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>56,20D</td>
<td>68,60B</td>
<td>0,00</td>
<td>22,21D</td>
<td>33,06C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>
| Objaśnienia: istotne różnice pomiędzy poszczególnymi okresami w tym samym roku badań oznaczono tymi samymi literami A, B – p ≤ 0,01, a, b – p ≤ 0,05; istotne różnice pomiędzy latami w poszczególnych okresach oznaczono ** – p ≤ 0,01, * – p ≤ 0,05; ns – nieistotne statystycznie

Tab. 2. Abundancja inwazji pasożytów w przebiegu doświadczenia

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciąża</td>
<td>I</td>
<td>66,45</td>
<td>40,20</td>
<td>0,66</td>
<td>6,61</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>75,54</td>
<td>74,02</td>
<td>0,13</td>
<td>13,87</td>
</tr>
<tr>
<td>2. dzień</td>
<td>I</td>
<td>67,86D</td>
<td>66,67D</td>
<td>1,19</td>
<td>17,26D</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>52,68D</td>
<td>56,59D</td>
<td>0,98</td>
<td>11,22D</td>
</tr>
<tr>
<td>28. dzień</td>
<td>I</td>
<td>33,33D</td>
<td>37,37D</td>
<td>0,00</td>
<td>7,07E</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>34,90D</td>
<td>39,06D</td>
<td>0,00</td>
<td>3,65D</td>
</tr>
<tr>
<td>42. dzień</td>
<td>I</td>
<td>34,16D</td>
<td>58,42D</td>
<td>0,00</td>
<td>4,46E</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>110,19D</td>
<td>54,85D</td>
<td>0,00</td>
<td>9,71E</td>
</tr>
<tr>
<td>56. dzień</td>
<td>I</td>
<td>155,36D</td>
<td>98,60D</td>
<td>0,00</td>
<td>21,88D</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>50,42D</td>
<td>56,20D</td>
<td>0,00</td>
<td>3,45E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>WESEM</td>
<td></td>
<td>5,09</td>
<td>2,09</td>
<td>0,16</td>
<td>0,91</td>
</tr>
<tr>
<td>Ψ-value</td>
<td></td>
<td>0,00000</td>
<td>0,00000</td>
<td>0,2002</td>
<td>0,0000</td>
</tr>
</tbody>
</table>

Objaśnienia: istotne różnice pomiędzy wierszami oznaczono tymi samymi literami A, B – p ≤ 0,01, a, b – p ≤ 0,05
rzeczą znaną powszechnie, że przy niedoborach tego pierwiastka w diecie, na co narażone są zwierzęta w wielu regionach Europy Środkowo-Wschodniej, mogą wystąpić zaburzenia mechanizmów immunologicznych, zarówno komórkowych, jak i humoralnych. Obniżenie odporności może prowadzić do zwiększonej podatności na inwazje pasożyticzne. W doświadczeniach przeprowadzonych na drobiaż wskazywano, że supplementacja diety selenem ograniczała istotnie negatywny wpływ zarażenia *E. tenella* na kurczaka (3). Również inne pierwiastki odgrywają istotną rolę w ograniczeniu inwazji pasożyticznych według Athanasiadou i wsp. (1) wśród nich wymienia się takie mikroelementy, jak miedź, fosfor oraz molibden, dla których udowodniono korzystną rolę w kształtowaniu odporności zwierząt na inwazję wywołane przez nicienie. W poszukiwaniu skutecznych metod ograniczających inwazje pasożytów warto pamiętać o zastosowaniu w żywieniu np. pasz wysokobiałkowych, które może wpływać na zarażenia pasożytne. W badaniach Beasley i wsp. (2) zastosowanie diety wysokobiałkowych oraz mineralno-ziołowego preparatu chemicznego pozwoliło zmniejszyć inwazję pasożytów na ich działanie. Oprócz wymienionych wcześniej działań hodowcowy powinni zwrócić uwagę na wpływ zapotrzebowania energii organizmu na wysiłek związany z reakcją odpornościową, a utrzymywanie inwazji pasożytów na niskim poziomie może wpływać na zarażenia pasożytowe. W konsekwencji sprzyjać może ograniczeniu stosowania preparatów przeciwpasożytowych, na które jest oporna coraz większa liczba pasożytów (18, 19).

Rezultaty przedstawionych badań własnych mogą zostać wykorzystane z powodzeniem przy opracowywaniu strategii profilaktycznych ograniczających zarażenia pasożyticzne w stadach owiec. Dostosowanie chemioterapii do najbardziej newralgicznych okresów inwazji pasożytów pozwoli na skuteczniejszą walkę z nimi. Powinno także zmniejszyć nadmierne stosowanie preparatów leczniczych, co jest niezwykle istotne ze względu na wzrastającą oporność wielu gatunków pasożytów na ich działanie. Oprócz wymienionych wcześniej działań hodowcowy powinni zwrócić uwagę na wpływ zapotrzebowania energii organizmu na wysiłek związany z reakcją odpornościową, a utrzymywanie inwazji pasożytów na niskim poziomie może wpływać na zarażenia pasożytowe. W konsekwencji sprzyjać może ograniczeniu stosowania preparatów przeciwpasożytowych, na które jest oporna coraz większa liczba pasożytów (18, 19).
Wpływ suplementacji diety preparatem zawierającym olejki eteryczne z *Origanum vulgare* (Lamiacea) i *Citrus spp.* (Citraceae) w aspekcie profilaktyki inwazji pasożytów przewodu pokarmowego owiec

WIKTOR BOJAR, TOMASZ M. GRUSZECKI, ANDRZEJ JUNKUSZEW, PAULINA DUDKO, MONIKA GREGUŁA-KANIA, KLAUDIUSZ SZCZEPANIAK*, MARIA STUDZIŃSKA*, MONIKA ROCZEŃ-KARCZMARZ*, KRZYŚZTOF TOMCZUK*, JOËL LE SCOUARNEC**, MICHAL MILERSKI***

Katedra Hodowli Małych Przeżuwaczy i Doradztwa Rolniczego, Wydział Biologii, Nauk o Zwierzętach i Biogospodarki, Uniwersytet Przyrodniczy w Lublinie, Akademicka 13, 20-950 Lublin, Polska
*Zakład Parazytologii i Chorób Inwazyjnych, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, Akademicka 12, 20-950 Lublin, Polska
**NEOVIA Research and Development Division, BP 235, 56006 Vannes Cedex, Francja
***Institute of Animal Science in Prague, Přátelství 815, 104 00 Praha Uhříněves, Czechy

Otrzymano 20.06.2017 Zaakceptowano 06.09.2017

Influence of dietary supplementation with a formulation containing essential oils from *Origanum vulgare* (Lamiacea) and *Citrus spp.* (Citraceae) as a means of prevention against invasions of gastrointestinal parasites in sheep

Summary

The aim of the study was to determine the efficiency of a formulation containing essential oils from *Origanum vulgare* and *Citrus spp.* in limiting the prevalence and intensity of parasitic invasions in ewes kept in an indoor management system. The study material was a group of 222 mother ewes of Polish Lowland breed. During the entire experiment, the animals were kept in an indoor management system with uniform environmental conditions. On the basis of the parasitologic analysis, the flock was divided into three groups. All groups were uniform from the perspective of genetic traits, age and environmental conditions. The differentiating factor was the addition of a preparation containing essential oils from *Origanum vulgare* and *Citrus spp.* in the dose of 4 kg/ton of feed. Group 1 – control group, non-supplemented diet (74 mother ewes); Group 2 – supplemented diet from third month of pregnancy to lambing (73 mother ewes); Group 3 – supplemented diet from third month of pregnancy to weaning (75 mother ewes). The experiment involved parasitologic tests aimed at the determination of prevalence and intensity of invasions of gastrointestinal parasites in mother ewes. The study material was faeces collected from the rectum of mother ewes before the start of the experiment and on day 2, 28, 42, 56 and 70 after lambing. On the basis of the observations, it was shown that continuous use of the preparation during the whole experimental period had a beneficial impact on reducing the prevalence of invasions of *Eimeria* spp. and *Capillaria*. However, it must be stressed that both the prevalence and the intensity of parasitic invasions in the studied flock was relatively low, and so the use of such a preventive method was feasible.

Keywords: sheep, essential oils, parasites
przeciwpasożyniczej, szczególnie w dużych stadach. Najczęściej dostrzeganą konsekwencją występowania parazytoz jest ich negatywny wpływ na zdrowotność poszczególnych zwierząt, z możliwymi upadkami na tym tle włącznie. Istotnym problemem jest subkliniczny przebieg inwazji, często niedostrzegany przez hodowców i z tego względu bagatelizowany. Cechuje się on słabo zauważalnym oddziaływaniem indywidualnym, lecz w skali stada jest bardzo istotny i wiąże się ze spadkiem wydajności oraz rentowności produkcji zwierzęcej (6, 8, 13, 17). Zjawisko to jest szczególnie istotne w owczarniach, gdzie stada charakteryzują się znaczną liczebnością. Przebieg inwazji uzależniony jest od wielu czynników. Poza intensywnością inwazji istotne są również cechy indywidualne żywiciela, a najbardziej stan odporności swoistej i nieswoistej zwierzęcia (14, 22).

Tradycyjną i powszechną metodą kontroli zarażeń jest stosowanie środków chemicznych. Powszechnie stosowane chemioprofilaktyki obarczone jest ryzykiem jej spadającej skuteczności, związane jest to z ryzykiem uodpornienia się pasożytów oraz obniżenia skuteczności terapii, dlatego też podjęto próby alternatywnego zwalczania pasożytów przez wodę nasyconego roztworem chloru sodu i sacharyzy (ciężar właściwy 1,25 g/ml) (5). Następnie zostały wykonane badania ilościowe próbek kału dla określenia OPG/EPG. Przed rozpoczęciem doświadczenia w 2., 28., 42., 56., 70. dniu po wykocie. W celu stwierdzenia istotnych różnic pomiędzy średnimi przedstawiono badania parazytologiczne, których celem było określenie skuteczności działania przeciwpasożyniczych, dlatego oczekiwany wpływ podnoszący rentowność produkcji zwierzęcej jest opracowanie skutecznych metod profilaktyki z wykorzystaniem naturalnych substancji roślinnych, które utrzymują znaczną liczebność pasożytów, jednocześnie wpływając na wzrost wydajności biochemicznej, a najbardziej stan odporności swoistej i nieswoistej zwierzęcia (14, 22).

Celem badań było określenie skuteczności działania preparatu zawierającego olejki eteryczne z Origanum vulgare (Lamiacea) i Citrus spp. (Citraceae) na ograniczenie ekstensywności oraz intensywności inwazji pasożytów w owiece matki utrzymywanych w systemie alkierzowym.

Badania przeprowadzone w eksperymentalnej stacji Bezek należącej do Uniwersytetu Przyrodniczego w Lublinie, położonej w południowo-wschodniej części Polski.

Materiał zwierzęcy. Materiał do badań stanowiła grupa 222 owiec matk rasy polska owca nizinna. Zwierzęta podczas całego doświadczenia utrzymywane były w systemie alkierzowym, w ujednoliconych warunkach środowiskowych. Podczas eksperymentu wszystkie grupy uczestniczące w doświadczeniu żywiole były w ten sam sposób, przy wykorzystaniu pasz dostępnych w danym okresie w gospodarstwie.

Grupy doświadczalne. Na podstawie wyników przeprowadzonej analizy parazytologicznej podzielono stado owiec na trzy grupy o zbliżonej ekstensywności i intensywności stwierdzonych inwazji pasożytniczych. Wszystkie grupy były jednorodne pod względem cech genetycznych, wieku oraz utrzymywane w tych samych warunkach. Czynnikiem różnicującym był dodatek preparatu OILIS SD w dawce zalecanej przez producenta w wielkości 4 kg/tonę paszy. Zastosowany preparat OILIS SD (Neovia) zawierał, według informacji podanych przez producenta, kompozycję olejków eterycznych z Origanum vulgare (Lamiacea) i Citrus spp. (Citraceae): grupa 1 – grupa kontrolna, dieta nie była suplementowana (74 owie matki), grupa 2 – dieta suplementowana preparatem w okresie od trzeciego miesiąca ciąży aż do wykotu (73 owie matki), grupa 3 – dieta suplementowana preparatem w okresie od trzeciego miesiąca ciąży do odsadzenia jagniąt (75 owie matek).

Badania koproskopowe. W trakcie doświadczenia przeprowadzono analizy parazytologiczne, których celem było określenie intensywności i ekstensywności inwazji pasożytniczych prawdopodobnie paszowym u owiec matek. Materiał badawczy stanowił kał pobierany z prostnicy od owiec matki przed rozpoczęciem doświadczenia w 2., 28., 42., 56., 70. dniu po wykocie. W celu określenia skuteczności preparatu OILIS SD w dawce zalecanej przez producenta, kompozycję olejków eterycznych z Origanum vulgare (Lamiacea) i Citrus spp. (Citraceae): grupa 1 – grupa kontrolna, dieta nie była suplementowana (74 owie matki), grupa 2 – dieta suplementowana preparatem w okresie od trzeciego miesiąca ciąży aż do wykotu (73 owie matki), grupa 3 – dieta suplementowana preparatem w okresie od trzeciego miesiąca ciąży do odsadzenia jagniąt (75 owie matek).

Badanie koproskopowe. W trakcie doświadczenia przeprowadzono analizy parazytologiczne, których celem było określenie intensywności i ekstensywności inwazji pasożytniczych prawdopodobnie paszowym u owiec matek. Materiał badawczy stanowił kał pobierany z prostnicy od owiec matki przed rozpoczęciem doświadczenia w 2., 28., 42., 56., 70. dniu po wykocie. W celu określenia skuteczności preparatu OILIS SD w dawce zalecanej przez producenta, kompozycję olejków eterycznych z Origanum vulgare (Lamiacea) i Citrus spp. (Citraceae): grupa 1 – grupa kontrolna, dieta nie była suplementowana (74 owie matki), grupa 2 – dieta suplementowana preparatem w okresie od trzeciego miesiąca ciąży aż do wykotu (73 owie matki), grupa 3 – dieta suplementowana preparatem w okresie od trzeciego miesiąca ciąży do odsadzenia jagniąt (75 owie matek).

Wyniki i omówienie

Coraz większą popularnością cieszą się hodowle ekologiczne, w których kontrola pasożytów jest wyzwaniem. Wiąże się ona ze stosowaniem niekonwencjonalnych środków ochrony przeciwpasożyniczej (18), dlatego niezwykle ważne jest poszukiwanie skutecznych środków opartych na naturalnych sub-
zawierającego olejki eteryczne z *Origanum vulgare* (Lamiaceae) i *Citrus* spp. (Citraceae). Przeprowadzone na początku doświadczenia badania koproскопowe wykazały obecność u owiec matek *Eimeria* spp., *Trichostrongylidae* oraz *Capillaria*. Na podstawie otrzymanych wyników obliczono ekstensywność (tab. 1) oraz intensywność inwazji pasożytów (tab. 2). Wpływ zastosowanego preparatu na obniżenie ekstensywności *Eimeria* spp. odnotowano w badaniu wykonanym w 2. dniu po wykocie. Potwierdzeniem skuteczności są stwierdzone istotnie niższe (p ≤ 0,05) wartości ekstensywności w grupie 2 (10,87%) i 3 (6,12%) w porównaniu do grupy 1 (22,22%). Potwierdzone statystycznie różnice (p ≤ 0,01) odnotowano w 28. dniu, warto zaznaczyć, że w grupach 2 i 3 nie stwierdzono oocyto w kiele, natomiast w grupie 1 ekstensywność wynosiła 17,78%. Podczas kolejnych pomiarów w 42., 56. oraz 70. dniu od wykocu odnotowano wzrost ekstensywności inwazji w grupę 2, w której wartości zbliżyły się do grupy 1. Należy zwrócić uwagę, że najniższe wartości ekstensywności w wszystkich omawianych terminach stwierdzono w grupie 3, natomiast najwyższe w grupie 1. We wszystkich przypadkach różnice okazały się statystycznie istotne (p ≤ 0,05). Analizując poziom ekstensywności nicieni żołądkowo-jelitowych, nie zaobserwowano jednoznacznego wpływu zastosowanego preparatu zawierającego olejki eteryczne z *Origanum vulgare* i *Citrus* spp. Statystycznie istotne różnice (p ≤ 0,05) pomiędzy grupami odnotowano w 2. dniu po wykocie między grupą 2 a 3, w 28. dniu pomiędzy grupą 1 (22,22%) a 3 (6,12%), w 42. dniu (2 a 3) oraz w 70. dniu, gdzie odnotowano najwyższą ekstensywność grupie 1 (48,89%), natomiast najniższą w grupie 3 (26,53%). Niski poziom ekstensywności odnotowano w przypadku nicieni z rodzaju *Capillaria*. Warto jednak zaznaczyć, że zastosowanie profilaktyki opartej na naturalnych substancjach wpłynęło (p ≤ 0,05) na obniżenie ekstensywności w 2. oraz 28. dniu po wykocie w grupach 2 i 3, w których nie odnotowano jaj *Capillaria* w kiele w porównaniu do grupy 1, gdzie w obu terminach procent zarząconych osobników wynosił 4,44%. Brak zarząconych osobników odnotowano w 42. dniu we wszystkich grupach. Natomiast w 56. i 70. dniu po wykocie nastąpił wzrost ekstensywności w grupie 1 (4,44% i 8,89%) oraz 2 (4,35% i 6,52%) w porównaniu do grupy 3 suplementowanej preparatem przez cały okres doświadczenia, w której nie stwierdzono jaj w kiele. Wyliczone różne pomiędy

Tab. 1. Ekstensywność inwazji pasożytów podczas doświadczenia

<table>
<thead>
<tr>
<th>Dni badań</th>
<th>Eimeria spp.</th>
<th>Trichostrongylidae</th>
<th>Capillaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>start</td>
<td>start</td>
<td>start</td>
</tr>
<tr>
<td>2. dzień</td>
<td>2. dzień</td>
<td>2. dzień</td>
<td>2. dzień</td>
</tr>
<tr>
<td>28. dzień</td>
<td>28. dzień</td>
<td>28. dzień</td>
<td>28. dzień</td>
</tr>
<tr>
<td>42. dzień</td>
<td>42. dzień</td>
<td>42. dzień</td>
<td>42. dzień</td>
</tr>
<tr>
<td>56. dzień</td>
<td>56. dzień</td>
<td>56. dzień</td>
<td>56. dzień</td>
</tr>
<tr>
<td>70. dzień</td>
<td>70. dzień</td>
<td>70. dzień</td>
<td>70. dzień</td>
</tr>
</tbody>
</table>

Objaśnienia: istotne różnice pomiędzy kolumnami oznaczono różnymi literami A, B – p ≤ 0,01, a, b – p ≤ 0,01

Tab. 2. Intensywność inwazji pasożytów podczas doświadczenia

<table>
<thead>
<tr>
<th>Dni badań</th>
<th>Eimeria spp.</th>
<th>Trichostrongylidae</th>
<th>Capillaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>start</td>
<td>start</td>
<td>start</td>
</tr>
<tr>
<td>2. dzień</td>
<td>2. dzień</td>
<td>2. dzień</td>
<td>2. dzień</td>
</tr>
<tr>
<td>28. dzień</td>
<td>28. dzień</td>
<td>28. dzień</td>
<td>28. dzień</td>
</tr>
<tr>
<td>42. dzień</td>
<td>42. dzień</td>
<td>42. dzień</td>
<td>42. dzień</td>
</tr>
<tr>
<td>56. dzień</td>
<td>56. dzień</td>
<td>56. dzień</td>
<td>56. dzień</td>
</tr>
<tr>
<td>70. dzień</td>
<td>70. dzień</td>
<td>70. dzień</td>
<td>70. dzień</td>
</tr>
</tbody>
</table>

Objaśnienia: jak w tab. 1.
grupa 3 a pozostałymi grupami uzyskały potwierdzenie statystyczne (p ≤ 0,05).

Powyższe wyniki badań wskazywać mogą na pozytywny wpływ preparatu na ograniczenie inwazji pasożytów. W wielu pracach wśród naturalnych środków o działaniu przeciwpasożytowym wyróżnia się właśnie *Origanum vulgare*, w którym zawarte są liczne substancje czynne, takie jak: tymol, karwakrol, limonen, olejek eteryczny pochodzący z *Citrus spp.* Zawartość limonenu w olejkach eterycznych z 96% zawartości *Citrus spp.* wynika prawdopodobnie z jego składu. Jak wiadomo, olejek eteryczny pochodzący z *Citrus spp.* składa się z naturalnej mieszaniny różnych aldehydów, takich jak cytronellal, cytral i innych, w których dominującym składnikiem chemicznym jest limonen. Limonen jest składnikiem chemicznym *Origanum vulgare* i *Citrus spp.* oraz nicieni z rodzaju *Origanum* i *Citrus* (citraceae) na coccidiowce z *Eimeria* spp. na owcach i bydła, w których dominującym składnikiem chemicznym jest limonen. Limonen jest istotnym składnikiem chemicznym olejków eterycznych pochodzących z *Citrus spp.* oraz nicieni z rodzaju *Origanum* i *Citrus* (citraceae) na coccidiowce z *Eimeria* spp. podobnie jak czyorraine, olejek eteryczny pochodzący z *Origanum vulgare* oraz *Citrus spp.* składa się z naturalnej mieszaniny różnych aldehydów, takich jak cytronellal, cytral i innych, w których dominującym składnikiem chemicznym jest limonen. Limonen jest istotnym składnikiem chemicznym olejków eterycznych pochodzących z *Citrus spp.* oraz nicieni z rodzaju *Origanum* i *Citrus* (citraceae) na coccidiowce z *Eimeria* spp. podobnie jak czyorraine, olejek eteryczny pochodzący z *Origanum vulgare* oraz *Citrus spp.* składa się z naturalnej mieszaniny różnych aldehydów, takich jak cytronellal, cytral i innych, w których dominującym składnikiem chemicznym jest limonen. Limonen jest istotnym składnikiem chemicznym olejków eterycznych pochodzących z *Citrus spp.* oraz nicieni z rodzaju *Origanum* i *Citrus* (citraceae) na coccidiowce z *Eimeria* spp. podobnie jak czyorraine, olejek eteryczny pochodzący z *Origanum vulgare* oraz *Citrus spp.* składa się z naturalnej mieszaniny różnych aldehydów, takich jak cytronellal, cytral i innych, w których dominującym składnikiem chemicznym jest limonen. Limonen jest istotnym składnikiem chemicznym olejków eterycznych pochodzących z *Citrus spp.* oraz nicieni z rodzaju *Origanum* i *Citrus* (citraceae) na coccidiowce z *Eimeria* spp. podobnie jak czyorraine, olejek eteryczny pochodzący z *Citrus vulgaris* substancje są nietoksyczne (2, 11). Także olejek eteryczny pochodzący z *Citrus vulgaris* substancje są nietoksyczne (2, 11).}

Piśmiennictwo

Adres autora: mgr inż. Paulina Dudko, ul. Akademicka 13, 20-950 Lublin; e-mail: dudko.paulina@gmail.com
Effect of dietary supplementation with preparation comprising the blend of essential oil from *Origanum vulgare* (Lamiaceae) and *Citrus* spp. (Citraceae) on coccidia invasion and lamb growth

Paulina Dudko, Andrzej Junkuszew, Wiktor Bojar, Michal Milerski, Klaudiusz Szczepaniak, Joël Le Scouarnec, Jitka Schmidová, Krzysztof Tomczuk and Maciej Grzybek

Department of Small Ruminants Breeding and Agriculture Advisory, University of Life Sciences in Lublin, Poland; Institute of Animal Science, Prague, Czech Republic; Department of Parasitology and Invasive Diseases, University of Life Sciences in Lublin, Poland; NEOVIA Research and Development Division, Vannes Cedex, France

ABSTRACT

The objective of this research was to assess the effectiveness of dietary supplementation with oils extracted from *Origanum vulgare* (Lamiaceae) and *Citrus* spp. (Citraceae) against coccidia and to determine the impact on lamb growth in an indoor housing system. A total of 222 ewes and 276 lambs of the Polish Lowland Sheep breed maintained indoors under the same environmental conditions were included in the study. Four-month pregnant ewes were divided into three treatment groups following parasitological evaluation. Experimental diets were supplemented with containing vegetal extracts of *O. vulgare* and *Citrus* spp. During the study, parasitological analyses and assessments of lamb growth were conducted. In vivo evaluation of lamb muscularity and fatness was performed at 100 days of age. The inclusion of the preparation containing the essential oil blend of *O. vulgare* and *Citrus* spp. in the diet of sheep resulted in decreases in both the intensity and prevalence of coccidian infection within the flock as well had influence increases in lamb growth. Therefore, this dietary supplement may contribute to the improved profitability of sheep farming through increased production efficiency and the production of higher-quality meat.

INTRODUCTION

Parasitic invasions are ranked among the most important barriers to efficient sheep production, posing serious hazards to flock health, especially at the high stocking densities that are commonly encountered in sheep farming (Ndao et al. 1995; Perry & Randolph 1999). The threat of parasitic infection in sheep housing facilities is a result of continual contamination of the animal environment with invasive parasites. The occurrence of parasitic infections commonly leads to adverse health consequences in animals, what cause significant losses in agriculture (Prichard 1994). An underestimated problem of an infected flock are subclinical infection which associated with diminished animal performance and profitability (Gauly et al. 2004; Mandal et al. 2007; Junkuszew et al. 2015; Grzybek et al. 2016). As a subclinical parasitic invasion proceeds asymptptomatically, it often goes unnoticed by sheep producers and is simply neglected. Conventional infection-control measures rely on the application of chemical agents. The repeated use of antiparasitic drugs may induce the development of parasite resistance that reduces therapeutic efficacy (Kaplan 2004; Waller 1997). Therefore, the chance to improve the profitability of animal production are use of efficient prophylactic strategies based on substances of plant origin to maintain low rates of infection (Athanasiadou & Kyriazakis 2004; Geary et al. 2004; Junkuszew et al. 2015). For example, the positive effect on reducing coccidiosis and increases in lamb growth in the application of essential oils from *Thymus vulgaris, Allium sativum, Artemisia absinthium, Dryopteris filix-mas, Tanacetum vulgare, Cucurbita pepo, Chenopodium ambrosioides, Inula helenium, Peumus boldus, Corallina rubens* has been previously reported (Junkuszew et al. 2015).

The main hazard for lambs in indoor housing systems seems to be coccidial infection, which results from the contamination of the indoor environment...
with oocysts excreted in the faeces of ewes. Importantly, the course of coccidian invasion is dependent on a number of factors. In addition to the intensity of the invasion, individual host characteristics play a great role and the specific and non-specific immune status of the animal is crucial (Klockiewicz et al. 2007; Tomczuk et al. 2015). Not infrequently, animals with a coccidian infection do not show any clinical manifestations and the parasitic disease symptoms occur when the animal body condition is deteriorating which is connected with the animal immunity system suppression (Binns et al. 2002). The apparent absence of disease during chronic coccidian infection can adversely affect the normal bacterial flora of the gastrointestinal tract and damage the mucosal lining of the intestine. This injury leads to impaired absorption of nutrients and decreased body weight gains (Daugschies et al. 2007; Chartier & Paraud 2012). In the light of these facts, it would be beneficial to study and introduce parasite prevention programmes using natural vegetal material that could help alleviate the course of *Eimeria* spp. invasion, limit subclinical coccidiosis and increase daily weight gain in sheep (Junkuszew et al. 2015).

Materials and methods

Study location

This study was conducted at the research experimental station in Bezek, part of the University of Life Sciences in Lublin, located in south-eastern Poland (51.197498 N 23.256301 E). The farm housed 550 ewes in the combined indoor-pasture management system. Lambing took place in January and lambs were kept with mothers throughout the entire experiment period.

Animals

The research animals included 222 ewes and 276 lambs of the Polish Lowland sheep breed. During the trial period, the animals were housed indoors under the same environmental conditions.

Trial groups

On the basis of coproscopic examination for parasite infection performed, ewes were randomised into three experimental groups in which this initial incidence and intensity of parasite infection were similar (Table 1). Ewes in all groups were uniform in terms of genetic background, age and housing conditions. Groups were kept separately from the 4th month of pregnancy. Experimental diets were formulated to contain the OILIS SD dietary supplement (NEOVIA/France), at the dose 4 g/day (for ewes) and 2 g/day (for lambs). According to the information provided by the producer, OILIS SD contained a blend of specific natural vegetal extracts from *O. vulgare* and *Citrus* spp. OILIS SD is a solid (free flowing powder). Contained in the preparation oils are stable and therefore to avoid problems and make it easier to distribute was mixed with barley once before distribution. The basic feeding system was the same in all of the treatment groups. Detailed feed composition in each experimental group presented in Tables 2 and 3.

Group 1 (74 ewes and 87 lambs) was the control group, which diet was not supplemented by OILIS SD during the duration of the experiment.

Group 2 (74 ewes and 105 lambs) ewes were fed with a diet supplemented with OILIS SD from the 4th month of pregnancy until lambing. After lambing, ewes and their lambs were fed the same diet as in Group 1.

Group 3 (74 ewes and 84 lambs) ewes were fed with a diet supplemented with OILIS SD from the 4th month of pregnancy until lamb weaning.

<table>
<thead>
<tr>
<th>Table 1. Prevalence (Prev., %) and intensity (Int.) of parasite invasion in ewes before the beginning to the experiment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
</tr>
<tr>
<td>Intensity (Log)</td>
</tr>
<tr>
<td>Prev. (%)</td>
</tr>
<tr>
<td>Eimeria spp.</td>
</tr>
<tr>
<td>Gastrointestinal nematodes</td>
</tr>
<tr>
<td>Trichuris</td>
</tr>
<tr>
<td>Capillaria</td>
</tr>
</tbody>
</table>
Newborn lambs were fed with a diet supplemented with OILIS SD from 14 days after birth to slaughter. The study included ewes that lambed within 14 successive days and their offspring.

Coprosopic examination

Parasitological analyses were performed throughout the experiment to identify gastrointestinal parasites in ewes and lambs in the three treatment groups. The first faecal collection and analysis of ewes was performed two months before lambing and these results served as the basis for animal allocation into treatment groups. Faecal samples were collected from lambs at 28, 42, 56, and 70 days of age. Faecal samples were taken directly from the rectum of ewes or lambs. Flotation method with saturated sodium chloride and sucrose was then used (specific gravity 1.25 g/ml) (Dryden et al. 2005). To determine the actual parasite burden, OPG (oocysts per gram of faeces) and EPG (eggs per gram of faeces) were calculated using the McMaster method according to the Raynaud modification (Raynaud 1970; Kochanowski et al. 2013).

Lamb growth

All lambs included in the study were born within 14 successive days. Newborn lambs were weighed at birth and at 28, 56, 70 and 100 days of age. Lamb weights were used to calculate daily body weight gains between the sampling times. In vivo ultrasound measurements of eye-muscle depth and subcutaneous fat-layer thickness were done in 100-day-old lambs using an ultrasound scanner (EchoSon Albit) equipped with electronic broadband linear probe (LA-510/L40). The ultrasonic measurements were performed between the last thoracic vertebra and the first lumbar vertebra.

Statistical analysis

Prior to analysis, oocyst counts were converted into natural logarithms (\(\log [\text{OPG} + 1] \)).

Data were analysed using multifactor analysis of variance (factorial ANOVA with interaction), Statistica programme (data analysis software system), version 6 (StatSoftInc., 2003). The analysis was conducted according to the mathematical model:

\[
Y_{ijk} = \mu + G_i + S_j + T_k + (G/C3S)_{ij} + (G/C3T)_{ik} + (S/C3T)_{jk} + e_{ijk}
\]

- \(Y_{ijk} \) – level of analysed trait
- \(\mu \) – mean trait value for population
- \(G_i \) – fixed effect of animal belonging to experimental group (Group 1, Group 2, Group 3)
- \(S_j \) – fixed effect of gender (ram, ewe)
- \(T_k \) – fixed effect of birth type (single, twins)
- \((G/C3S)_{ij} \) – interaction of experimental group and gender
- \((G/C3T)_{ik} \) – interaction of experimental group and birth type
- \((S/C3T)_{jk} \) – interaction of gender and birth type
- \(e_{ijk} \) – random error

Table 2. Diet composition during the experiment (Groups without supplementation).

<table>
<thead>
<tr>
<th></th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barley</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Crushed oats</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.03</td>
<td>0.2</td>
</tr>
<tr>
<td>Bran</td>
<td></td>
<td></td>
<td>0.03</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Dried sugar beet pulp</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Rape extracted meal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soybean meal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hay</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Green silage</td>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
<td>0.8</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 3. Diet composition during the experiment (Groups with supplementation).

<table>
<thead>
<tr>
<th></th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ewes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oilis Feed(^a)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Crushed oats</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.03</td>
<td>0.2</td>
</tr>
<tr>
<td>Bran</td>
<td></td>
<td></td>
<td>0.03</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>Dried sugar beet pulp</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Rape extracted meal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soybean meal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hay</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Green silage</td>
<td>2.0</td>
<td>2.5</td>
<td>2.5</td>
<td>0.8</td>
<td>2.5</td>
</tr>
</tbody>
</table>

\(^a\)Oilis Feed (Barley 96% +4 % Oilis SD)
(G T) – interaction of experimental group and birth type
(S T) – interaction of gender and birth type
eijk – random error

Tukey’s test (for different numbers) at \(p \leq 0.05 \) and \(p \leq 0.01 \) was used to determine significance of differences among group means.

The chi-square test was used to determine the significance of differences in prevalence. The data were analysed using the programme ‘R’, module ‘epir’ (Stevenson & Heuer 2012).

Results

The coproscopic evaluation prior to the beginning of the trial revealed the predominant presence of protozoa from the *Eimeria* genus, gastrointestinal nematodes, and nematodes of the *Capillaria* genus in the ewe flock (Table 1). Parasitic invasion intensity and prevalence were similarly low in all experimental groups and no clinical manifestations. Not found in any case, significant differences of statistical.

The coproscopic examination of lambs conducted at 28, 42, 56 and 70 days of age detected only presence of oocysts from the *Eimeria* genus. At 28 days of age, the prevalence of *Eimeria* spp. oocysts ranged between 6.67% in Group 2 up to 29.89% in Group 1 (Figure 1). The difference was statistically significant \((p < 0.01) \). Invasion intensity (Figure 2) was lowest in Group 2 (mean log OPG - 0.095) and highest in Group 1 (mean log OPG 0.731). After 42 days, the prevalence of *Eimeria* spp. oocysts increased by 9.19, 43.81 and 47.62 percentage points in Groups 1, 2 and 3, respectively. The difference between Group 1 and 2 was statistically significant \((p < 0.01) \).

The highest invasion intensity \((p < 0.01) \) at 42 days of age was reported in Group 3 (mean log OPG – 2.439), compared to was observed in Group 1 (mean log OPG – 0.745) and Group 2 (mean log OPG – 0.789). On the next sampling day (56 days), a decline in the prevalence of *Eimeria* spp. oocysts was observed in the group fed with the supplemented diet (Group 3 ¼ 46.43%), while the prevalence continued to increase in the other two groups (Group 1 ¼ 80.46 and Group 2 ¼ 67.62%). The differences between Group 3 and Group 1 was statistically significant \((p < 0.01) \). Similarly, invasion intensity was highest \((p < 0.01) \) in Group 1 (mean log OPG 2.283), while the lowest intensity was observed in Group 2 (mean log OPG 1.107) and Group 3 (mean log OPG – 1.071). A similar trend in both invasion intensity and prevalence was observed at 70 days of age. It is noteworthy that the invasion prevalence in the group of lambs fed supplemented diet with essential oil from *Origanum vulgare* and *Citrus* spp. (Group 3 ¼ 42.86%) was less \((p < 0.01) \) than of that observed in Group 1 ¼ 96.55% and Group 2 ¼ 90.48%. The intensity of invasion *Eimeria* spp. was statistically the lowest \((p < 0.01) \) in the Group 3 in compared to Group 1 and 2 (Figure 2).

No significant differences were observed in the body weight of lambs at birth or at 28 days of age between the experimental groups (Table 4). Lamb weights at 56 days of age indicated that the animals from Group 3 were significantly heavier than the
lambs in Group 1 and Group 2 ($p < .01$). At 70 and 100 days of age, lambs from Group 3 continued to be significantly heavier than lambs from the other two groups ($p < .01$). No differences in lamb weight were observed between Group 1 and Group 2 throughout the experiment.

The positive impact of the coccidiostatic additive was confirmed by the calculated daily weight gains between the sampling dates (Table 5). Notably, during the period from 28 to 56 and 0 to 100 days of age, lamb daily weight gains in Group 3 were significantly higher than in the other groups ($p < .01$). During the other experimental periods, the calculated daily weight gains were also higher in Group 3 than in Groups 1 and 2.

Ultrasound scanning was performed to determine the effect of the coccidiostatic preparation on lamb muscularity and adiposity (Figure 3). The thinnest layer of fat tissue was observed in Group 3 (3.20 mm) when compared to the other two groups.

Table 4. Body weight (kg) of experimental lambs.

<table>
<thead>
<tr>
<th>Age (days)</th>
<th>Group 1 X ± SE</th>
<th>Group 2 X ± SE</th>
<th>Group 3 X ± SE</th>
<th>T</th>
<th>G</th>
<th>S</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.58 ± 0.02</td>
<td>4.45 ± 0.01</td>
<td>4.30 ± 0.02</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>28</td>
<td>10.21 ± 0.25</td>
<td>9.98 ± 0.24</td>
<td>10.98 ± 0.29</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>56</td>
<td>16.43 ± 0.39A</td>
<td>16.00 ± 0.35A</td>
<td>18.74 ± 0.40A</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>70</td>
<td>20.43 ± 0.46A</td>
<td>19.43 ± 0.42A</td>
<td>23.07 ± 0.46A</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>100</td>
<td>27.32 ± 0.61A</td>
<td>26.78 ± 0.52A</td>
<td>30.84 ± 0.53A</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

Data presented as X ± SE. Significant differences between columns are indicated with different letters: A,B $p < .01$.

Table 5. Daily weight gains (g/day) of experimental lambs.

<table>
<thead>
<tr>
<th>Age interval (days)</th>
<th>Group 1 X ± SE</th>
<th>Group 2 X ± SE</th>
<th>Group 3 X ± SE</th>
<th>T</th>
<th>G</th>
<th>S</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–28</td>
<td>199.91 ± 6.95</td>
<td>189.46 ± 6.73</td>
<td>222.36 ± 8.27</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>28–56</td>
<td>222.06 ± 7.40A</td>
<td>223.98 ± 5.89A</td>
<td>277.39 ± 6.98A</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>56–70</td>
<td>246.02 ± 10.96A</td>
<td>244.93 ± 8.50Ab</td>
<td>308.92 ± 10.82A</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>70–100</td>
<td>229.72 ± 8.37A</td>
<td>244.90 ± 5.66</td>
<td>258.98 ± 6.77B</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>0–100</td>
<td>227.11 ± 6.35A</td>
<td>221.84 ± 5.31A</td>
<td>260.88 ± 5.55B</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>

Data presented as X ± SE. Significant differences between columns are indicated with different letters: A,B $p < .01$ and a,b $p < .05$.

Figure 2. Intensity (OPG $\frac{1}{2}$ oocysts per gram of faeces) of *Eimeria* spp. invasion in lambs during the experiment (log). Data presented as X ± SE. Significant differences between columns are indicated with different letters: A,B $p < .01$.

Table 4. Body weight (kg) of experimental lambs.

Table 5. Daily weight gains (g/day) of experimental lambs.
1 ¼ 4.23 mm and Group 2 ¼ 3.85 mm). The average depth of the *longissimus dorsi* muscle was significantly higher in Group 3 (25.78 mm) than in the other two groups (Group 1 ¼ 22.21 mm and Group 2 ¼ 22.33 mm) ($p < 0.01$).

Discussion

The assessment of the effectiveness of antiparasitic treatments should consider not only the treatment dose, but also the optimal timing of application. The present study aimed to establish if a coccidiostatic preparation formulated with essential oils from *O. vulgare* and *Citrus* spp. administered to pregnant ewes could decrease the prevalence and intensity of protozoan (*Eimeria* spp.) invasion and thus, reduce the risk of environmental contamination with oocysts. As is generally known, coccidiosis resulting from environmental exposure to oocysts poses a serious threat to nursing lambs (Junkuszew et al. 2015). It should be noted that both the prevalence and intensity of protozoan invasion by *Eimeria* spp. was relatively low in the ewe flock at the beginning of the current study. However, ewes supplied with the evaluated dietary supplement during pregnancy yielded lambs that were characterised by a lower intensity and prevalence of coccidian invasion in lambs at 28 days of age compared to lambs from the control group. These results indicate a lower risk of lamb infection that is related to a lowered environmental contamination with oocysts in the groups receiving the OILIS SD dietary supplement during gestation. Interestingly, the highest increase in the prevalence and intensity of invasion occurred at 42 days of age in lambs from Group 3 that received the supplemented diet. It was previously demonstrated that 42 days of age is within the period when invasion intensity increases to a peak (Junkuszew et al. 2015). The higher intensity of invasion in Group 2 and 3 may be attributed to the activity of the preparation applied in the pregnancy. Lambs whose mothers were supplied with the coccidiostatic dietary supplement during pregnancy may also have a compromised resistance against coccidian invasion, which would favour an increase in the prevalence and intensity of invasion. Pregnant ewes are known to produce antibodies, which are passed to their offspring via the colostrum. Accordingly, a lower level of coccidia during pregnancy in ewes receiving the supplemented diet could lead to a lack of stimulation of the immune system leading to a decrease in the production of specific antibodies. The substantial effects of ewes milk on lamb body weight and immune status has been confirmed in other studies (Hernández-Castellano et al. 2015). Another factor resulting in the increased prevalence and intensity of invasion in Group 3 may be associated with the activity of the examined dietary supplement promoting a higher rate of oocyst excretion. Key information to consider when interpreting the results of the current study is that lambs were offered supplemented creep feed beginning at 14 days of age; however, observations of lamb behaviour throughout the nursing period revealed that lambs only began showing a genuine interest in consuming solids at approximately 20 days of age. Until then, the main food for lambs is mother’s milk. Probably as well this is the reason later infect lambs
coccidia. In addition, the average prepatent period for coccidian oocyst excretion is two to three weeks (Le Sueur et al. 2009), which may have contributed to the increased invasion prevalence and intensity observed at 42 days of age in the current study (Group 3).

Evidence of the effectiveness of the coccidiostatic supplement under investigation includes a significant decline in both the prevalence and intensity of Eimeria spp. invasion in the lambs fed a diet containing this supplement. This effect may be attributed to the component of the essential oils of O. vulgare and Citrus spp., which constitute the main components of the preparation. Origanum vulgare has been addressed in a vast body of literature and has been recognised for its natural potent antiparasitic properties. Essential oil of oregano reduces the incidence of bloody diarrhoea, reduces the number of faecal oocysts and prevents tissue damage (Giannenas et al. 2003; Anthony et al. 2005). It also improves feed conversion ratios and thus contributes to higher body weight gains (Bampidis & Crump 2005). Oil of oregano demonstrates bactericidal properties. Studies by Abdelqader et al. (2012) highlighted a substantial effect of citrus essential oils with 96% limonene content against Ascaridia galli, which resulted in a 68.4% reduction in its invasion of experimentally challenged broiler chickens. The effectiveness of essential oils obtained from Citrus spp. is ascribed to its chemical composition, which is a highly complex natural mixture of various aldehydes, such as citronellal, citral, and others, with limonene being a dominant component. Limonene is the main constituent of citrus fruit peel and accounts for up to 95% of the total of orange peel oil, which is considered the richest source of monoterpenes (Lota et al. 2002).

The beneficial effects of O. vulgare and Citrus spp. on milk chemical composition, milk yield and other factors have been reported in numerous studies. Lacerda et al. (2014) demonstrated a positive influence of dietary oregano oil on milk quality. Volanis et al. (2004) and Bampidis and Robinson (2006) reported a positive impact of dietary Citrus spp. oil supplementation on milk composition. Therefore, the higher body weight and greater daily weight gain of lambs in the current study (Group 3) may be the result of improvements in dam milk yield and quality in response to constituents of the coccidiostat dietary supplement. Obviously, such changes in dam milk production were not only sole cause of the improved growth of lambs from Group 3. However, the coccidiostatic activity of the dietary lambs supplement could substantially contribute towards these differences in growth. Junkuszew et al. (Junkuszew et al. 2015) demonstrated that decreasing the coccidian level increases lamb body weight and daily weight gains.

No clinical manifestations of coccidiosis (i.e. bloody diarrhoea) were observed in the flock in the current study, yet ongoing coccidiosis presented in a subclinical form. This information is quite valuable, as many sheep producers neglect coccidiosis in the absence of evident clinical signs. However, animals that are asymptomatic carriers of protozoan parasites can develop active coccidiosis and the presentation of clinical symptoms can be delayed until body condition has already become severely deteriorated (Binns et al. 2002). Consequently, ignoring subclinical coccidiosis without taking proper preventive measures can bring devastating economic loss to a sheep flock (Junkuszew et al. 2015).

The higher body weight and daily weight gain of lambs receiving the supplemented diet translated into improved carcase properties as indicated by in vivo evaluation. However, it should be noted that greater daily gains are frequently associated with the unfavourable increase in fatness (Carrasco et al. 2009). To determine the effect of the dietary supplement on adiposity and muscularity, in vivo ultrasound evaluation was performed (Milerski 2001; Junkuszew & Ringdorfer 2005; Maxa et al. 2007; Grill et al. 2015). It was demonstrated that the dietary supplement containing the essential oil combination of O. vulgare and Citrus spp. had a positive influence on lamb muscularity while significantly lowering fatness. This result indicates that the dietary supplement contributes to meeting the demands of consumers for lean lamb as, in addition to pricing, lamb fat content is an important factor that is considered by consumers.

Conclusions

The inclusion of the preparation containing the essential oil blend of O. vulgare and Citrus spp. in the diet of sheep resulted in decreases in both the intensity and prevalence of coccidian infection within the flock as well had influence increases in lamb growth. Therefore, this dietary supplement may contribute to the improved profitability of sheep farming through
increased production efficiency and the production of higher quality meat.

Acknowledgements

The authors thank Colin Cameron Ph.D. from ScienceDocs Inc. for language editing.

Disclosure statement

The authors declare that experimental procedures, interpretation of results or any scientific aspect of this study were not influenced by the product manufacturer. The authors alone are responsible for the content and writing of this article.

References

Marino M, Bersani C, Comi G. 2001. Impedance measurements to study the antimicrobial activity of essential oils...

Wpływ suplementacji diety preparatem zawierającym olejki eteryczne z *Origanum vulgare* (Lamiaceae) i *Citrus* spp. (Citraceae) na efekt ekonomiczny produkcji jagniąt rzeźnych

Effect of diet supplementation with a preparation containing essential oils from *Origanum vulgare* (Lamiaceae) and *Citrus* spp. (Citraceae) on the economic effect of production of lambs for slaughter

Streszczenie. Celem pracy było oszacowanie wpływu suplementacji diety preparatem zawierającym olejki eteryczne z *Origanum vulgare* (Lamiaceae) i *Citrus* spp. (Citraceae) na efekt ekonomiczny produkcji jagniąt rzeźnych. Materiał do badań stanowiła grupa 222 matek oraz 276 jagniąt rasy polska owca nizinna. Biorąc pod uwagę kryterium parazytologiczne, stado owiec podzielono na trzy grupy doświadczalne, jednorodne genetycznie, w tym samym wieku. Zwierzęta utrzymywano w tych samych warunkach środowiskowych. Czynnikiem różnicującym był dodatek preparatu zawierającego kompozycję olejków eterycznych z *Origanum vulgare* (Lamiaceae) i *Citrus* spp. (Citraceae). W trakcie doświadczenia wszystkie jagnięta poddawano okresowym ważeniom, tzn. przy urodzeniu, w 28., 56., 70. i 100. dniu życia. Na podstawie uzyskanych mas ciała oszacowano wartość ekonomiczną odchowanych jagniąt w poszczególnych grupach doświadczalnych. Uzyskane wartości posłużyły do obliczenia procentowych różnic w wartości jagniąt pomiędzy grupami doświadczalnymi a grupą kontrolną. Stwierdzono korzystny wpływ suplementowania diety jagnięt preparatem zawierającym olejki z *Origanum vulgare* (Lamiaceae) oraz *Citrus* spp. (Citraceae) na ich wzrost, w konsekwencji na wynik ekonomiczny produkcji. Wartość jagniąt z grup doświadczalnych była wyższa o 7,83–45,17% w zależności od wieku jagniąt w stosunku do grupy kontrolnej. Wykorzystanie ocenianych preparatów w profilaktyce przeciw pasożytowej może być szansą dla hodowców oraz producentów na zwiększenie efektywności ekonomicznej produkcji jagniąt rzeźnych.

Słowa kluczowe: jagnięta, suplementacja diety, efekt ekonomiczny
WSTĘP

Celem niniejszej pracy było oszacowanie wpływu suplementacji dieży preparatem zawierającym olejki eteryczne z *Origanum vulgare* (Lamiaceae) i *Citrus* spp. (Citraceae) na efekt ekonomiczny produkcji jagniąt rzeźnych.

MATERIAŁ I METODY

Badania przeprowadzono w eksperymentalnej stacji Bezek należącej do Uniwersytetu Przyrodniczego w Lublinie, w której utrzymywanych jest 550 owiec matki. Wykoty odbywały się w miesiącu styczniu. Jagnięta utrzymywano z matkami w owczarniach przez cały okres odchowania.

Material zwierzęcy. Badaniami objęto 222 matek i 276 jagniąt owiec polskiej owcy nizinnej, które podczas całego doświadczenia utrzymywano w systemie alkierzowym w ujednoliconych warunkach środowiskowych. Zwierzęta ze wszystkich grup podczas eksperymentu żywono w ten sam sposób z wykorzystaniem pasz dostępnych w danym okresie w gospodarstwie.

Grupy doświadczalne. Na podstawie analizy parazytologicznej, przeprowadzonej na początku doświadczenia, stado owiec podzielono na trzy grupy doświadczalne, jednorodne genetycznie i w tym samym wieku, które utrzymywano w tych samych warunkach środowiskowych. Czynnikiem różnicującym był dodatek preparatu OILIS SD (Neovia), który zawierał, według informacji podanych przez producenta, kompozycję olejków eterycznych z *Origanum vulgare* (Lamiaceae) i *Citrus* spp. (Citraceae). Podawany on był w dawce zalecanej przez producenta w wielkości 4 kg/tonę paszy.

Wyróżniono następujące grupy doświadczalne: grupa 1 – kontrolna, dieta matek i jagniąt nie była suplementowana (74 owce matki i 87 jagniąt), grupa 2 – dieta matek była suplementowana preparatem OILIS SD o działaniu kokcydiodostatycznym w okresie od trzeciego miesiąca ciąży aż do wykotu, urodzone jagnięta żywione były jak grupa...
kontrolna (73 owce matki i 105 jagniąt) i grupa 3 – dieta matek była suplementowana preparatem OILIS SD o działaniu kokcydiostatycznym w okresie od trzeciego miesiąca ciąży do odsadzenia jagniąt, urodzone jagnięta od 14. dnia życia otrzymywały paszę z dodatkiem OILIS SD (75 owiec matki i 84 jagnięta).

W trakcie doświadczenia wszystkie jagnięta poddawano okresowym ważeniom: przy urodzeniu, w 28., 56., 70. i 100. dniu życia. Na podstawie uzyskanych wyników oszacowano wartość ekonomiczną odchowanych jagniąt w poszczególnych standardach wagowych, uwzględniając ich przynależność do grup doświadczalnych. Do wyliczenia wartości jagniąt posłużono się średnią ceną uzyskiwaną za materiał rzeźny w poszczególnych standardach wagowych. Obowiązujące ceny zostały udostępnione przez Regionalny Związek Hodowców Owiec i Kóz w Lublinie (RZHÖiK w Lublinie). W szacunkach (obliczając średnią wartość jagnięcia) uwzględniono wszystkie jagnięta objęte doświadczeniem (28., 56., 70. oraz 100. dzień); w przypadku zwierząt mieszczących się w standardzie od 0 do 12 kg przyjęto wartość każdego kilograma równą 0 zł, ze względu na brak możliwości ich sprzedaży.

 Wyniki dotyczące mas ciała uzyskanych przez jagnięta w poszczególnych standardach wagowych opracowano statystycznie z zastosowaniem procedury GLM i z wykorzystaniem programu Statistica 13. Do analizy zastosowano następujący model matematyczny:

\[Y_{ijk} = \mu + T_i + G_j + P_k + S(G)_{lj} + e_{ijkl} \]

gdzie poszczególne symbole oznaczają:
- \(Y_{ijk} \) – poziom analizowanej cechy,
- \(\mu \) – średnia wartość cechy dla populacji,
- \(T_i \) – stały wpływ typu urodzenia,
- \(G_j \) – stały wpływ grupy,
- \(P_k \) – stały wpływ płci,
- \(S(G)_{lj} \) – stały wpływ standardu wagowego w ramach grupy,
- \(e_{ijkl} \) – błąd losowy.

WYNIKI I Dyskusja

Analiza wyników mas ciała jagniąt (tab. 1) wykazała, że były one wyrównane pomiędzy grupami w obrębie tych samych standardów wagowych. Uzyskane wyniki mas ciała posłużyły do wyliczenia średniej wartości jagnięcia w poszczególnych grupach w różnych okresach i standardach wagowych (tab. 2).

Średnia wartość jednego jagnięcia w 28. dniu życia wynosiła w grupie 1. od 0,00 (sw. 0–12 kg) do 145,50 zł (sw. 13–16 kg), w grupie 2. od 0,00 (sw. 0–12 kg) do 152,98 zł (sw. 13–16 kg), a w grupie 3. od 0,00 (sw. 0–12 kg) do 153,20 zł (sw. 13–16 kg). Średnia wartość jednego jagnięcia w 56. dniu życia kształtowała się w grupie 1. od 0,00 (sw. 0–12 kg) do 213,57 zł (sw. 23–30 kg), od 0,00 do 204,97 zł w grupie 2. oraz w grupie 3. od 0,00 do 206,57 zł, analogicznie w tych samych standardach wagowych. Kolejnym analizowanym okresem był 70. dzień, w którym w grupie 3. nie stwierdzono jagniąt w najniższym standardzie wagowym (0–12 kg), a średnia wartość jagnięcia kształtowała się od 162,50 zł (sw. 13–16 kg) do 234,90 zł (sw. 31–35 kg). Natomiast wartości w grupie 1. wynosiły od 0,00 (sw. 0–12 kg) do 251,82 zł (31–35 kg), a w grupie 2. od 0,00 (sw. 0–12 kg) do 232,18 zł (sw. 31–35 kg). Ostatnim analizowanym okresem był 100. dzień, w którym średnia wartość za jedno jagnię wynosiła w grupie 1. od 173,81 (sw. 13–16 kg) do 284,56 zł (sw. 36–40 kg), w grupie 2. od 165,36 (sw. 13–16 kg) do 278,77 zł (sw. 36–40 kg), a w grupie 3. od 201,05 (sw. 17–22 kg) do 283,99 zł (sw. 36–40 kg).
Tabela 1. Masa ciała jagniąt (kg) w poszczególnych standardach wagowych (średnia ± błąd standardowy)
Table 1. The body weight of lambs (kg) in specific weight standards (mean ± standard error)

<table>
<thead>
<tr>
<th>Grupa doświadczalna</th>
<th>Standard wagowy</th>
<th>28. dzień</th>
<th>56. dzień</th>
<th>70. dzień</th>
<th>100. dzień</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>\bar{x} ± SE</td>
<td>n</td>
<td>\bar{x} ± SE</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>0–12</td>
<td>63</td>
<td>9,52 ± 0,22</td>
<td>11</td>
<td>11,06 ± 0,43</td>
</tr>
<tr>
<td></td>
<td>13–16</td>
<td>12</td>
<td>14,13 ± 0,26</td>
<td>35</td>
<td>15,04 ± 0,16</td>
</tr>
<tr>
<td></td>
<td>17–22</td>
<td>0</td>
<td>–</td>
<td>26</td>
<td>19,34 ± 0,33</td>
</tr>
<tr>
<td></td>
<td>23–30</td>
<td>0</td>
<td>–</td>
<td>3</td>
<td>25,42 ± 1,36</td>
</tr>
<tr>
<td></td>
<td>31–35</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>36–40</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>0–12</td>
<td>71</td>
<td>9,06 ± 0,20</td>
<td>15</td>
<td>10,88 ± 0,39</td>
</tr>
<tr>
<td></td>
<td>13–16</td>
<td>9</td>
<td>14,85 ± 0,54</td>
<td>37</td>
<td>15,12 ± 0,17</td>
</tr>
<tr>
<td></td>
<td>17–22</td>
<td>0</td>
<td>–</td>
<td>24</td>
<td>19,00 ± 0,37</td>
</tr>
<tr>
<td></td>
<td>23–30</td>
<td>0</td>
<td>–</td>
<td>4</td>
<td>24,40 ± 0,53</td>
</tr>
<tr>
<td></td>
<td>31–35</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>36–40</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>0–12</td>
<td>53</td>
<td>9,81 ± 0,24</td>
<td>5</td>
<td>12,46 ± 0,17</td>
</tr>
<tr>
<td></td>
<td>13–16</td>
<td>15</td>
<td>15,12 ± 0,52</td>
<td>17</td>
<td>15,43 ± 0,22</td>
</tr>
<tr>
<td></td>
<td>17–22</td>
<td>0</td>
<td>–</td>
<td>33</td>
<td>19,81 ± 0,29</td>
</tr>
<tr>
<td></td>
<td>23–30</td>
<td>0</td>
<td>–</td>
<td>9</td>
<td>24,59 ± 0,48</td>
</tr>
<tr>
<td></td>
<td>31–35</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>36–40</td>
<td>0</td>
<td>–</td>
<td>0</td>
<td>–</td>
</tr>
</tbody>
</table>

SEM 0,175 0,260 0,314 0,386
Grupa 0,429 0,071 0,392 0,492
typ urodzenia 0,000 0,027 0,000 0,017
standard 0,000 0,000 0,000 0,000
Płeć 0,123 0,198 0,562 0,794
Tabela 2. Średnia wartość jagnięcia w poszczególnych standardach wagowych w kolejnych dniach obserwacji

Table 2. The average value of each lamb in weight standards in the subsequent observation days

<table>
<thead>
<tr>
<th>Grupa doświadczalna</th>
<th>Standard wagowy (kg)</th>
<th>Cena za kg (PLN)</th>
<th>Średnia wartość jagnięcia (PLN)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>28. dzień</td>
</tr>
<tr>
<td>1</td>
<td>0–12</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>13–16</td>
<td>10,3</td>
<td>154,92</td>
</tr>
<tr>
<td></td>
<td>17–22</td>
<td>9,3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>23–30</td>
<td>8,4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>31–35</td>
<td>7,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>36–40</td>
<td>7,3</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>0–12</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>13–16</td>
<td>10,3</td>
<td>152,98</td>
</tr>
<tr>
<td></td>
<td>17–22</td>
<td>9,3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>23–30</td>
<td>8,4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>31–35</td>
<td>7,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>36–40</td>
<td>7,3</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>0–12</td>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>13–16</td>
<td>10,3</td>
<td>153,20</td>
</tr>
<tr>
<td></td>
<td>17–22</td>
<td>9,3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>23–30</td>
<td>8,4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>31–35</td>
<td>7,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>36–40</td>
<td>7,3</td>
<td>–</td>
</tr>
</tbody>
</table>

Na podstawie uzyskanych z RZHOiK w Lublinie cen jagniąt obliczono procentową różnicę wartości jagniąt pomiędzy grupami doświadczalnymi a grupą kontrolną (rys. 1). Wartość jagniąt w 28. dniu w grupie otrzymującej preparat zawierający olejki z Origanum vulgare (Lamiaceae) oraz Citrus spp. (Citraceae) była wyższa o 45,17%, a w grupie 2. o 26,08% niższa w porównaniu z grupą 1. W 56. dniu różnice te uległy zmniejszeniu. Średnie wartości jagniąt w grupie 3. były wyższe o 16,11%, natomiast w grupie 2. o 5,52% niższe w porównaniu z wartościami uzyskanymi w grupie kontrolnej. W 70. oraz 100. dniu wartość jagniąt w grupie 3. była wyższa odpowiednio o 10,06 i 7,83% w porównaniu z grupą 1. Natomiast w grupie 2. utrzymała się niekorzystna tendencja odnotowana w poprzednim okresie. Wartość jagniąt omawianej grupy w porównaniu z grupą kontrolną była niższa o 8,98% (70. dzień) i 1,35% (100. dzień). Wyższe wartości jagniąt z grupy 3. uzyskiwane w trakcie doświadczenia mogły być spowodowane suplementacją diety preparatem zawierającym olejki z Origanum vulgare (Lamiaceae) oraz Citrus spp. (Citraceae).
Rys. 1. Procentowe różnice wartości jagniąt w odniesieniu do grupy kontrolnej (jako wartość wyjściową przyjęto wartość sprzedanych jagniąt z grupy 1)

Fig. 1. Percentage differences in lamb values in reference to the control group (the value of lambs sold in group 1 was taken as the starting value)

WNIOSKI

Zastosowanie w diecie jagniąt preparatu zawierającego olejki *Origanum vulgare* (Lamiaceae) oraz *Citrus* spp. (Citraceae) pozytywnie wpływało na ich wzrost, co także
przelożyło się na wynik ekonomiczny produkcji. Zwierzęta, których dieta była suplementowana preparatem OILIS SD, charakteryzowały się wyższą wartością w porównaniu z pozostałymi dwiema grupami. Jest to bardzo istotna informacja dla hodowców oraz producentów, ponieważ pozwala zwiększyć efektywność ekonomiczną produkcji jagniąt rzeźnych.

PIŚMIENNICTWO

Summary. The aim of this study was to estimate the influence of diet supplementation containing essential oils from Origanum vulgare (Lamiaceae) and Citrus spp. (Citraceae) on the economic effect of producing lambs for slaughter. The study material was a group of 222 ewes and 276 lambs of polish lowland sheep. Based on the coproscopic examination carried out at the beginning of the experiment, the flock of sheep was divided into three experimental groups that were uniform
in terms of genetic background and age. Animals were kept under the same housing conditions. Differentiation factor was the addition of OILIS SD (Neovia), which contained composition of essential oils from *Origanum vulgare* (Lamiaceae) and *Citrus* spp. (Citraceae). During the experiment all born lambs were given to periodic weighing at birth, on the 28th, 56th, 70th and 100th day of life. Based on the body weights obtained the economic value of reared lambs has been estimated, taking into account belonging to particular experimental groups of observed animals. The obtained values were used to calculate the percentage of the difference in value of lambs between the groups and the control group. As a result of the study, has been found beneficial effect of the supplementation lambs diet formulation containing oils from *Origanum vulgare* (Lamiaceae) and *Citrus* spp. (Citraceae) on their growth, which also translated into economic value of production. The value of these lambs was higher from 7.83% to 45.17% depending on the age of lambs. Use of the test preparation in antiparasitic prevention may be an opportunity for breeders and producers to increase the economic efficiency of the production of lambs for slaughter.

Key words: lambs, diet supplementation, economic effect

Otrzymano:/ Received: 25.10.2017
Zaakceptowano:/ Accepted: 15.12.2017